

Fertilizer Use and Development in Pakistan

•Fertilizer use is pre-requisite for crop productivity and contributes 30-50 per cent among yield contributing factors, to increased crop production

•Fertilizer use in Pakistan is relatively at an advanced level; however, nutrient ratio is imbalanced, particularly for potash.

Nutrient use ratio, with respect to P

	With respect to P			
Year	N	Р	K	
1980	3.71	1.00	0.04	
1985	3.23	1.00	0.09	
1990	3.79	1.00	80.0	
1995	4.02	1.00	0.06	
2000	3.35	1.00	0.03	
2005	3.65	1.00	0.03	
2008	3.70	1.00	0.02	
Desired	2.00	1.00	0.50	

Role of Potassium (Physiological)

- Enzymes in Nucleic acid metabolism : Formylase, polynucleotide phosphorylase
- Enzymes in carbohydrate metabolism: Pyruvie kinase, fructokinase, phosphofructokinase
- *****Translocation of proteins and sugars

Role of Potassium (Agronomic)

Tolerance to stress: Biotic and abiotic
 *Better moisture regulation through control over stomatal movement

Sugar recovery in sugarcane: A case of K role in quality improvement • Sugars are trans-located at the rate of 2.5 cm minute⁻¹ in well fertilized sugarcane plant

• A lack of K may reduce this rate to below half that value

• Therefore, without adequate K in plant, sugar may remain entrapped in the source instead of being transported to the sink for recovery at a Sugar Mill.

• The hydrolytic activity of *invertase* enzyme increases in low K status of plants resulting in high reducing sugars and low conversion to recoverable sucrose.

R&D on Potash usage in Pakistan

- Start of K use and MOP-SOP controversy (80s and 90s)
- NFC started project on Bulk blending for promoting BFU, including K
- Field Trails by Soil Fertility Research Institute, Punjab (Nineties to date, continuous)
- Engro Chemical Pakistan Limited Fertilizer industry stepping in to promote K usage: Introduction of crop specific NPK blends (2001)
- Involvement of allied industry Sugar and tobacco Industries, and Citrus polishing plants (2004 to date)
- Public and private sector cooperation in extension activities (2007 to date)

nal Symposium, 5-7 November 2009, OUAT, Bhuban

MOP-SOP controversy/studies

- > To compare MOP and SOP
- > To study the effect of MOP on soil, crop yield and quality
- **>** Recommendations of PPIC-PARC Joint studies
- > To take a decision whether or not to introduce MOP in Pakistan
- Nineteen institutions representing Federal Government (PARC), provincial agricultural departments, agricultural universities, and fertilizer industry, besides a nongovernment organization participated in conducting the field trials

	Trials	Cont N only	NP	NPK (SOP)	NPK (MOP)	NPK (Mean)
		Whe	at (kg/ha))		
Mean	212	1,751	3,558	3,983	4,034	4,009
Yield inc	kg	-	1,807	2,232	2,283	2,258
over control	%	-	103	127	130	129
		Ric	e (kg/ha)			
Mean	62	2,544	3,759	4,456	4,514	4,485
Yield inc	kg	-	1,215	1,912	1,970	1,941
over control	%	-	48	75	77	76
		Maiz	ze (kg/ha)			
Mean	20	1,382	2,903	3,306	3,350	3,328
Yield inc	kg	-	1,521	1,924	1,968	1,946
over control	%	-	110	139	142	141

Oilseed crops response to potash and its sources, 1993-98

	Trials	Cont N only	NP	NPK (SOP)	NPK (MOP)	NPK (Mean
		Cotton (kg	seed cott	on/ha)		
Mean	72	1,343	2,048	2,144	2,214	2,179
Yield inc over control	kg %		705 52	801 60	871 65	836 62
		Rapeseed	(Canola) (kg/ha)		
Mean	5	1,000	1,875	2,312	2,316	2,314
Yield inc over control	Kg %		875 88	1,312 131	1,316 132	1,314 131
		Groun	dnut (kg/h	a)		
Mean	27	1,840	2,313	2,568	2,576	2,572
Yield inc over control	Kg %		472 26	728 40	736 40	732 40

	Trials	Cont N only	NP	NPK (SOP)	NPK (MOP)	NPK (Mean)
		Sugar	cane (t/h	a)		
Mean	4	38.1	63.0	68.2	66.5	66.4
Yield inc over control	t/ha %	- -	24.9 65	28.1 73	28.4 75	28.3 74
		Sugar	beet (t/h	a)		
Mean	4	38.7	50.5	58.5	55.9	57.3
Yield inc	t/ha	-	11.8	19.9	17.2	18.6
over control	%	-	30	51	44	48

Outcome of MOP-SOP studies

- Based on the results of the project, Govt. of Pakistan took a policy decision of allowing the use of MOP during 1996, putting restrictions of not recommending it on soils with incidence or potential of soil salinity and restricted drainage
- Engro Chemical Pakistan Limited started manufacturing crop specific NPK blends during 2001, at Port Qasim, Karachi with annual capacity of producing around 170 KT production.

Field Trials by Soil Fertility Research Institute, Punjab (SFRIP)

•Field experiments conducted throughout the Punjab to fetch response magnitude of crops, to applied K segregated into major cropping systems or Zones

•Rainfed Zone: Rainfall is the only source of moisture for crops, with wheat-maize cropping system

•Rice Zone consists of irrigated north-eastern parts of the province with rice-wheat cropping system

•The Central Zone comprises of central irrigated districts of the province having multiple cropping system

•The Cotton Zone falls in southern parts of the province where wheat-cotton is the major crop rotation.

ium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and

PRESENT (2004) AND PAST (1996) SCENARIO OF POTASSIUM (ppm) STATUS IN PUNJAB SOILS

ZONE	1990		2005	5	%	SAMPLES
LONE	MEAN	SD	MEAN	SD	DECREASE	ANALYSED
RAINFED	114	34	106	21	7	3014
RICE	176	71	132	90	33	2816
CENTRAL	295	153	198	83	49	5583
COTTON	210	15	165	32	27	4012
s presentation was made at the . nagement for Food Production, !	IPI-OUAT-IPNI Internation	nal Symposiu vironmental D	ım, 5-7 November 2009, amage.	OUAT, Bhuba	neswar, Orissa, India. The Role and I	Benefits of Potassium in Improving Nu

K ₂ O LEVELS (Kg/ha)	GRAIN YIELD (Kg/ha)	% INCREASE OVER CONTROL	NO. OF EXPERIMENTS		
	WH	EAT			
0	3082	3082			
60	3264	6	158		
120	3233 NS	5	158		
	MA	IZE	-		
0	3615		18		
75	3690	2	18		
150	3760 NS	4	18		

CROP RESPONSE TO POTASSIUM FERTILIZER IN RICE ZONE (1996-2004)

K ₂ O LEVELS (Kg/ha)	GRAIN YIELD (Kg/ha)	% INCREASE OVER CONTROL	NUMBER OF EXPERIMENTS
	WH	EAT	
0	4087 c		132
60	4161 bc	2	132
120	4325 a	6	132
150	4250 ab	4	132
	RI	CE	
0	3894 b		131
75	3944 a	1	131
150	4002 a	3	131
his presentation was made at the IPI-OUAT-IPN lanagement for Food Production, Quality and Re	I International Symposium, 5-7 November 2009, 0 duced Environmental Damage.	DUAT, Bhubaneswar, Orissa, India. The Role an	d Benefits of Potassium in Improving Nutrient

K ₂ O LEVELS (Kg/ha)	GRAIN YIELD (Kg/ha)	% INCREASE OVER CONTROL	NUMBER OF EXPERIMENTS
	W	HEAT	
0	3971 b		91
60	4141 a	4	91
120	4200 a	6	91
	ŀ	RICE	
0	3384		61
75	3452	2	61
150	3532 NS	4	61
	M	AIZE	
0	3336 b		79
75	3527 a	6	79
150	3594 a	8	79

CONCE TO . ZONE

CROP RESPONSE TO POTASSIUM FERTILIZER IN COTTON ZONE (1996-2004)

K ₂ O LEVELS (Kg/ha)	GRAIN YIELD (Kg/ha)	% INCREASE OVER CONTROL	NO. OF EXPERIMENTS
	WH	EAT	
0	3404 b		133
50	3539 a	4	133
100	3622 a	6	133
	RI	CE	
0	2712		12
75	2793	3	12
150	2812 NS	4	12
This presentation was made at the IPI-OUAT-IPN Management for Food Production, Quality and Re	l International Symposium, 5-7 November 2009, C Iduced Environmental Damage.	DUAT, Bhubaneswar, Orissa, India. The Role an	nd Benefits of Potassium in Improving Nutrient

Outcome of SFRIP Trials

•Intensive cropping in the Punjab is resulting in soil-K depletion in all cropping systems/Zones

•Crop response to applied K has been inconsistent in various Zones

•Potassium depletion rate is the highest in Central Zone due to multiple cropping and cultivation of high K removing crops like potato, sugarcane and maize

Highlights

- Engro started manufacturing crop specific NPK blends from 2001
- Team of agronomists for development activities
- Targeted high K removing crops like potato, sugarcane, banana, tobacco, citrus etc., and involved allied industries
- Joint efforts with Public Sector Extension Department

Engro demonstration	plots in Punjab
Wheat: Data of 105 trials – 20	004 to 2008
Practice	Impact
Use of fertilizers (NPK) on soil test basis	Yield = 4235 kg per acre
Farmer practice (K invariably absent)	Yield = 2965 kg per acre
Value:Cost Ratio range	1.6 - 5.5
Basmati Rice: Data of 65 trial	s – 2004 to 2008
Use of fertilizers (NPK) on soil test basis	Yield = 4250 kg per acre
Farmer practice (K invariably absent)	Yield = 3640 kg per acre
Value:Cost Ratio range	1.7 – 5.9
Note: These yield differences are not just becaus adjustd in Engro standard treatments on the basi	e of K. All 3 nutrients were s of soil analysis reports.
This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 Nov Management for Food Production, Quality and Reduced Environmental Damage.	vember 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrie

Engro demonstration plots in Punjab

ractice	Impact
se of fertilizers (NPK) on soil test basis	Yield = 25500 kg per acre
Farmer practice (K occasionally present)	Yield = 19550 kg per acre
Value:Cost Ratio range	2.5 to 9.4
Maize: Data of 50 trials – 2004 to	2008
Use of fertilizers (NPK) on soil test basis	Yield = 6570 kg per acre
Farmer practice (K occasionally present)	Yield = 5450 kg per acre
Value:Cost Ratio range	2.5 to 6.8

Note: These yield differences are not just because of K. All 3 nutrients were adjustd in Engro standard treatments on the basis of soil analysis reports.

Collaborative efforts with Sugar Industry Pattoki Sugr Mills, Kasur and Engro jointly conducted a sugarcane productivity enhancement program in Mill Feeding Zone Balanced fertilizer (NPK) applied at generalized rate of 210-115-90 kg per Ha on 15000 acres on farmer fields and 2500 acres on Mills managed farms for 3 consecutive years

• Both yield and cane quality improved during project years

Causes of slow adoption of K fertilizers by farmers

- More than 80% farming families operating at subsistence level, growing food grain crops like wheat and rice, which are less responsive to K addition
- Less developed marketing system for cash crops: a) No quality premium passed on to grower while only middlemen benefit from quality of produce; b) Lack of price surety at the time of harvest
- No subsidy on K fertilizers except initial years
- MOP-SOP controversy also affected K promotional efforts negatively
- Fertilizer Recommendations are generalized over Areas Lack of site specific recommendation systems

nber 2009. OUAT. Bhub

Way forward – All stakeholders to join hands

- Fertilizer industry: To ensure availability of all needed fertilizers including potash at all times
- Extensionists: To promote and demonstrate benefits of Potash to farmers, leaving behind useless debates like MOP – SOP controversy
- Farmers: Apply potash on the basis of soil testing to all crops. If soil testing not available, K must be applied to high consuming crops like potato, sugarcane, maize, orchards etc
- Government: Keeping current international market trends in view, provide subsidy on K fertilizers; and enhance soil testing facilities
- Agro-based industry: Offer quality premium to growers for promoting K usage

Any suggestions, pl send to drzaheerahmad@gmail.com

