Effect of K on N use efficiency-India scenario

K.N. Tiwari¹, B.S. Dwivedi², V.K. Singh³ and M.C. Meena²

¹Formerly with IPNI- India Programme, Gurgaon ²Division of Soil Science and Agricultural Chemistry, IARI, New Delhi ³Project Directorate for Cropping Systems Research, Modipuram

This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient

Nitrogen use efficiency (NUE)

- A complex term with several components
- Efficiency of conversion of fertilizer or soil N in to economic products
- Mostly measured as a ratio of output i.e. biological or economic yield and input i.e. N supply

Agronomic efficiency = $(Y_T - Y_0)/F_N$ Recovery efficiency = $(U_T - U_0)/F_N$ Physiological efficiency = $(Y_T - Y_0)/(U_T - U_0)$ Partial factor productivity = Y_T/F_N

his presentation was made at the IP-LOUAT-IPM International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient Idanagement for Food Production, Quality and Reduced Environmental Damage.

Implications of low NUE

- Global RE_N estimates = 33%
- RE_N in cereals: 20-30% in rainfed and 30-40% in irrigated conditions
- Nitrous oxide from fertilized soils accounts for 2128 mt CO₂ equivalent i.e., 30% of total agricultural GHG emission
- Increased potential for groundwater pollution
- High cost of production i.e., low farm profits

This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient

Ways to improve N use efficiency

- Site-specific N management
- Continued improvement in cropping system management
- Choice of cultivars
- Conservation tillage
- Genetic tools
- N source/rate/application method
- · Precision agriculture
- Fertilizer N scheduling
- Balanced fertilization
 - -Balanced K fertilization
 - -Large quantities of K removed by crop harvest
 - -When adequately replenished the returns are substantial

K helps enhancing NUE

- Rapid canopy expansion is a major determinant of growth and high yields.
- N is major nutrient responsible for leaf expansion by way of cell division and cell elongation.
- Higher the no. and volume of cells, greater is the amount of cell water in the vacuoles and so is the demand of solutes to maintain desired turgor pressures.
- Requirement of K (major osmotic solute in vacuolar water in the plant cell) increases.
- Adequate K supply is must for efficient utilization of N.

This presentation was made at the IP-CUMI-TIPM International Symposium 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Benefits of Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Benefits of Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Benefits of Potassium in Improving Nutrient Management for Evol Bowleton Charlest Annual Potassium in Improving Nutrient Management for Evol Bowleton Charlest Annual Potassium in Improving Nutrient Management (India Potassium India Potassium I

The Need for Nutrient Balance

Balanced fertiliser use at the macro level in India has been equated with a consumption ratio of 4:2:1 (N:P2O5:K2O).

Unbalanced nutrient application is widespread in India, more so in the intensively cultivated, irrigated areas such as the Indo-Gangetic plains which contribute a large share of the total food grain production, obviously by mining soil nutrient reserves.

Fertilizer consumption (2007-08)

State	Fertilizer	Consumption ratio				
	(kg/ha)	N	P_2O_5	K ₂ O		
Punjab	210.0	34.3	9.1	1		
Haryana	187.6	39.0	10.9	1		
U.P.	149.6	15.1	4.5	1		
Uttarakhand	118.9	11.2	2.4	1		
Bihar	162.8	11.0	2.3	1		
Jharkhand	68.5	9.2	4.7	1		
W.B.	144.2	2.2	1.3	1		
Rajasthan	45.5	33.7	12.5	1		
Maharashtra	103.1	3.0	1.5	1		
M.P.	66.4	10.5	5.7	1		
India	113.4	5.5	2.1	1		

Source: FAI (2007-08)

This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Ni

Unbalanced Nutrient use in IGPR

Example: Rice-wheat system

Regions _	Fertilizer nutrient use (kg ha ⁻¹)					
regions _	N	P ₂ O ₅	K ₂ O	Zn	FYM*(t ha-1)	
TGP (Punjab)	284	118	0	9.9	0.0	
TGP (Haryana)	334	110	0	15	2.6	
UGP	218	97	4	3.5	8.8	
MGP	224	78	22	9.9	5.6	
LGP	182	17	61	1.8	3.8	
IGPR	237	73	22	7.4	4.7	

*Farmer's apply FYM at 2-3 years interval.

Sharma et al. (2004)

This presentation was made at the IPI-GUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient Measurement the Food Production of Production Production (Production Production P

Nutrient uptake in intensive cropping systems in India

Cropping System	Yield, t/ha	Nutrient uptake, kg/ha/year				
		N	P_2O_5	K ₂ O	Total	
Rice-wheat	8.8	235	92	336	663	
Maize-wheat	7.7	220	87	247	554	
Pigeonpea-wheat	4.8	219	71	339	629	
Rice-rice	6.3	139	88	211	438	
Soybean-wheat	7.7	260	85	204	549	
Maize-wheat-greengram	8.2	306	62	278	646	
Rice-wheat-greengram	11.2	328	69	336	763	
Maize-potato-wheat	8.6 + 11.9(t)*	268	96	358	722	
Rice-wheat-cowpea	9.6 + 3.9(f)*	272	153	389	814	
Rice-wheat-maize + cowpea	9.3 + 29(f)	305	123	306	734	

^{*}t and f represent tuber and fodder yield, respectively.

This presentation are made at the Inc. Duta-THPM International proposition, 5-7 New York This presentation was a made at the Inc. Duta-THPM International Proposition, 5-7 New York This presentation are not the Inc. of Production Original and Reduced Environmental Daman Research Services and Proposition Original Proposition

Nutrient uptake ratios in MEY plot under RWCS

Location	Nutrient uptake	ratio (N=100)	% share of NPK in total uptake			
	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
Sabour	42	149	34	14	52	
Palampur	40	138	36	14	50	
R.S. Pura	53	163	32	17	51	
Ranchi	33	125	39	13	48	
Ludhiana	54	151	33	18	49	
Faizabad	41	129	37	15	48	
Kanpur	29	112	42	12	46	
Modipuram	32	105	42	13	45	
Varanasi	37	167	33	12	55	
Pantanagar	29	111	42	12	46	
Mean	38	132	38	14	48	

Tiwari et al., 2006

This presentation was made at the IP+OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient Management Food Production, Quality and Reduced Environmental Damagae.

Nutrient uptake ratios in MEY plot under RRCS

Location	Nutrient uptake ratio (N=100)		% share of NPK in total uptake		
	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
Maruteru	38	118	39	15	46
Jorhat	46	153	33	15	52
Navsari	51	147	34	17	49
Karjat	41	140	35	15	50
Thanjavur	35	138	37	13	50
Coimbatore	37	112	40	15	45
Mean	41	135	36	15	49

Tiwari et al., 2006

This presentation was made at the IP-CUMI-TIPM International Symposium 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Benefits of Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Benefits of Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Benefits of Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Potassium in Improving Nutrient Management (Inc.).

Annual nutrient balance (000 t) in IGPR nutrient mining ?

Pagian	Nutrie	Nutrient balance (000 t)				
Region	N	Р	K			
Trans-Gangetic Plain	-118.5	-121.3	-827.4			
Upper Gangetic Plain	-63.0	-91.2	-565.9			
Middle Gangetic Plain	68.8	-46.8	-302.4			
Lower Gangetic Plain	-2.9	-7.9	-26.9			
IGPR (Total)	-115.7	-267.3	-1722.6			

Sharma et al. (2004)

Response to fertilizer K: Some facts

- Depends to a considerable extent on the supply of N
- Not so frequent in initial years of intensive cropping, more so in arid regions
- Responses appear with the exhaustion of accumulated reserves.
- K bearing minerals are not inexhaustible K source; rate of K release (non-exch K) declines with time.
- Excessive depletion of non-exch K results in greater K fixation.

This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubanaswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient

On-farm response to nutrients under different cropping systems

Cropping system	Response (kg rice grain equivalent/kg nutrient) N P K			Economic response (Rs./Re invested on nutrient)		
				N	P	K
Rice-rice	12.0	14.6	16.2	9.9	5.1	10.6
Rice-wheat	10.1	15.9	14.0	8.4	5.7	9.4
Maize-wheat	7.7	15.1	18.4	5.9	5.0	12.3
Maize-Bengal gram	14.5	13.1	14.1	11.8	4.6	10.0
Tomato-rice	19.5	20.2	51.0	10.3	5.1	24.9
Average	15.2	14.7	13.1	11.5	4.8	8.1

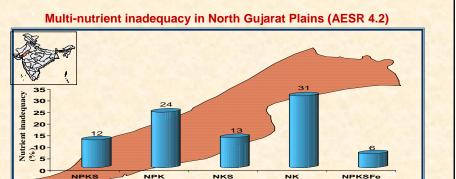
AICRP-CS (2009)

Agronomic efficiency (kg grain/kg nutrient) in LTFEs

Location & Crop	Nitro	ogen	Phospl	norus	Potas	sium
	1973-77	1992-96	1973-77	1992-96	1973-77	1992-96
Palampur						
Maize	14.6	-1.6	13.9	20.6	2.4	20.0
Wheat	4.3	-3.1	13.4	21.2	3.6	13.2
Ranchi						
Soybean	-10.4	-8.1	6.1	10.6	4.1	20.6
Wheat	-7.8	-1.4	29.9	38.2	1.0	15.9
Coimbatore						
Fingermillet	3.1	5.4	35.3	43.9	-11.4	13.4
Maize	1.7	-1.3	32.7	28.6	-1.3	14.5
Bhubaneswar					May 1	
Rice (Kharif)	6.7	2.6	-1.05	5.5	6.9	8.2
Rice Rabi)	11.2	3.2	1.8	14.1	2.7	5.5
<u>Jabalpur</u>		Name and				
Soybean	26.0	8.4	7.9	7.7	2.9	13.7
Wheat	7.0	0.5	20.2	41.1	8.4	6.0

LTFE Reports

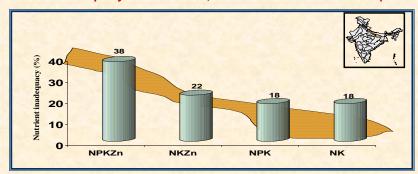
NPK fertility status of Indian soils as evaluated on the basis of STL database


Nutrient	% Districts in different fertility classes							
	Low	Medium	High					
Ramamoorthy & Ba	Ramamoorthy & Bajaj (1969): 1.3 million samples from 184 to 226 districts							
Nitrogen	52	43	5					
Phosphorus	47	49	4					
Potash	20	53	27					
Ghosh and Hasan (1976, 1979, 1980): 9.2	million samples from	n 310 to 365 districts					
Nitrogen	62	33	5					
Phosphorus	46	52	2					
Potash	20	42	38					
Motsara (2002): 3.6	5 million samples fro	m 450 districts						
Nitrogen	63	26	11					
Phosphorus	42	38	20					
Potash	13	37	50					

Wheat response to K (60 kg K₂O/ha) in onfarm trials on low, medium and high K soils

K Fertility rating	District	Trials (nos)	Response (kg/ha)
Low	6	749	245
Medium	22	2167	250
High	12	1834	192

AICRP-CS Reports


This presentation was made at the InClust Tell International Symposium, 5-7 November 2009, OUAT, Bribbaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient Management for was the InCluster Original States of Potassium in Improving Nutrient Management for was

- Sampling site: Villages Lukhwad/Detrogpura/Virampura, Taluk Mehsana, District Mehsana (Gujarat)
- Major cropping systems: Pearlmillet-based, cotton-based, sesame-based system
- The soils are alkaline (average pH 9.0), but salinity problem is absent.
- Widespread deficiencies of N and K are noticed, as 99 and 90% samples, respectively exhibit
 potential inadequacy of N and K. 50 and 34% samples fall the P and S responsive category,
 respectively.

Dwivedi et al., 2006

•Sampling site: Village Malikpur, Taluk Sadar, District Faizabad (Uttar Pradesh)

- •Major cropping system: Rice-wheat, Rice-vegetables
- •Soils are neutral to mildly alkaline with an average pH of 8.1, and the EC is invariably <1.0 dS/m.
- •All samples exhibit low to the medium status of organic C and available K, and thus categorised as responsive to N and K applications. More than half of the samples are also responsive to P or Zn.

Dwivedi et al., 2006

This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrien Management for Food Production, Quality and Rockyce of Engineering Production County and Rockyce of Engineering Production County (Production) and Rockyce of Engineering Production (Production) and Rockyce of Engineering Production (Production) and Rockyce of Engineering Production (Production) and Rockyce of Production (Production) and Rock

Percentage increase in production due to fertilizer use on farmers' fields in different group of crops (1999-2003)

Crop	No. of	Vield				over
	Trials	Kg/ha	N	NP	NK	NPK
Cereals	2,991	1,823	48.1	76.1	67.0	98.0
Oilseeds	361	823	28.9	59.8	49.6	83.9
Pulses	42	586	33.4	99.2	58.1	117.0
Foodgrains	3,394	1,487	42.9	76.7	62.9	98.4

NK interaction in rice and groundnut on an Inceptisol

K rates (kg/ha)	N rates (kg/ha)			N rates (kg/ha)			
	60	80	Mean	60	80	Mean	
	R	ice yield (t	/ha)	G/nu	Pod yield	(t/ha)	
0	3.10	3.02	3.06	1.68	1.70	1.69	
30	3.41	3.30	3.36	1.84	1.93	1.88	
60	3.64	3.61	3.63	2.07	2.15	2.11	
90	3.75	3.83	3.67	2.06	2.23	2.14	
Mean	3.48	3.44	-	1.91	2.00	3e - 10	
LSD at 5%	N= NS, K= 0.10, NxK= 0.12			N= 0.05, K=0.08, N×K=NS			
Mitra et al., 2	Mitra et al., 2001						

oresentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient

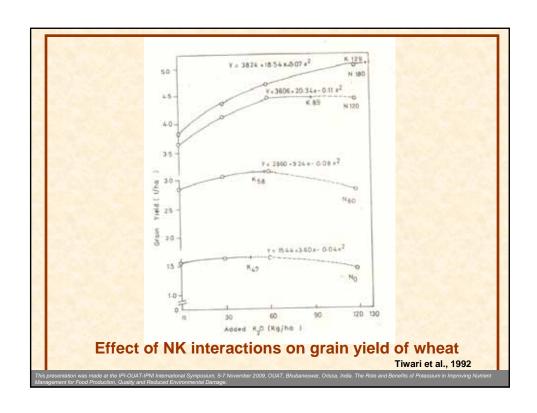
NK interaction in *rabi* groundnut on an Inceptisol

K rates	N rates (kg/ha)			N rates (kg/ha)		
(kg/ha)	60	80	Mean	60	80	Mean
	Shelling (%)			Oi	l content (%)
0	62.5	62.4	62.5	40.7	41.0	40.9
30	64.0	64.1	64.1	43.3	43.6	43.5
60	65.9	66.9	66.4	45.0	46.5	45.8
90	66.6	67.2	66.9	45.2	46.8	46.0
Mean	64.8	65.2	-	43.6	44.5	
LSD at 5%	N= NS, K=0.6, NxK=NS			N= 0.4	, K=NS, Nx	K=NS

Mitra et al., 2001

Effect of NK interaction in wheat and sorghum (f) yield

K rates (kg/ha)	N rates (kg/ha)			N rates (kg/ha)		
(ng/na)	0	120	Mean	0	80	Mean
	Wheat yield (t/ha)			Sorghum (f) yield (t/ha)		
0	1.42	1.52	1.47	5.27	5.24	5.25
50	1.89	2.12	1.98	5.48	6.72	6.10
Mean	1.63	1.82	- M - M	5.37	5.98	
LSD at 5%	N= 0.16, K =NS, NxK=NS			N= 0.42	2, K=NS, N	K=0.53


Gundalia et al., 2001

This presentation was made at the IP-CUMI-TIPM International Symposium 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Benefits of Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Benefits of Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Benefits of Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Potassium in Improving Nutrient Management for Evol Bowleton Charlest and Potassium in Improving Nutrient Management (Inc.).

Response of rice to added K at varying levels of N (6 years average)

Added N (kg/ha)	Grain	yield (t/ha)	Response	kg grain per
	Without K	With 50 kg K ₂ O	(kg/ha)	kg K ₂ O
100	4.14	4.38	244	4.9
150	4.41	4.84	433	5.7
200	4.14	5.15	1017	10.1

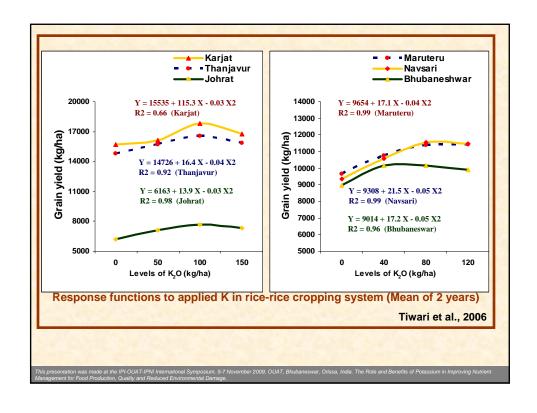
Tiwari et al., 1992

K thresholds in rice leaf under varying N supply

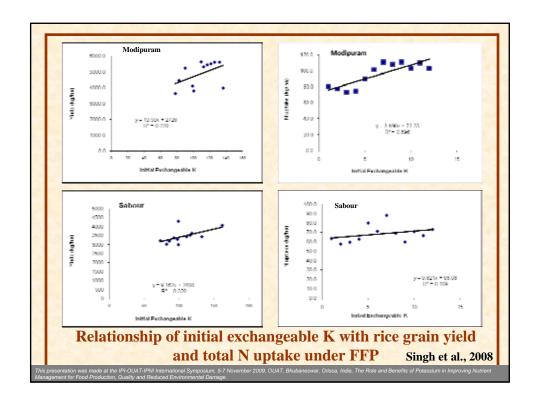
N rates (mg N/kg soil)	Range of K (%) in top two leaves					
TWING SOIL)	Sufficient (0-10%)*	Slightly deficient (10-20%)	Moderately deficient (20-40%)	Extremely deficient (40%)		
0	2.00-2.30	1.80-2.00	1.55-1.80	1.55		
50	2.05- 2.35	1.90-2.05	1.65-1.90	1.65		
100	2.15-2.50	1.95-2.15	1.71-1.95	1.71		
200	2.20-2.75	1.95-2.20	1.83-1.95	1.83		

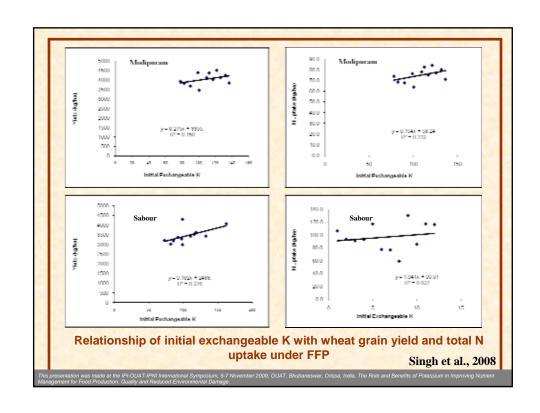
* Yield reduction

Bansal et al., 1993


This presentation was made at the IPI-GUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient Measurement the Food Production of Production Production (Production Production P

K in SSNM


his presentation was made at the IP-10/UAT-PM International Symposium. 2-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrier despendent of the Conference o


Economically optimum rates of potassium application in the rice-wheat system

The state of the s	Optimum rate, kg K ₂ O/ha				
Location	Rice	Wheat	System		
Sabour	74.6	77.5	152.5		
Palampur	75.5	103.3	182.4		
R. S Pura	94.2	104.4	195.7		
Ranchi	81.8	90.9	179.1		
Ludhiana	101.7	84.2	188.3		
Faizabad	80.4	59.5	142.8		
Kanpur	88.6	65.9	152.9		
Modipuram	87.2	87.9	176.5		
Varanasi	85.4	104.2	171		
Pantnagar	76.4	77	147.5		

The cureum		te of potassium appl rice system	ication in the		
Location	n Optimum rate, kg K ₂ O/ha				
	Kharif rice	<i>Rabi</i> rice	System		
Maruteru	93.3	93.8	187.5		
Jorhat	89.0	91.7	175.8		
Navsari	71.5	105.9	185.6		
Karjat	93.6	95.0	165.0		
Coimbatore	33.5	45.3	72.3		
Fhanjavur	85.6	81.9	177.9		

	k	oala	nced nu	utritio	n	
Treatment	3 2 7	Rice	274	5477	Whea	nt
	Grain yield (kg/ha)	HI	AE _K (kg/kg K)	Grain yield (kg/ha)	HI	AE _K (kg/kg K)
Modipuram (n=24)						
FFP	4857	0.42	* * *	4038	0.43	
FFP+K	5729	0.44	13.95	4773	0.44	11.76
FFP+K+M	6117	0.44	20.16	5134	0.45	17.54
			Sabour (n=2	24)		
FFP	3456	0.42	* *.	2279	0.42	
FFP+K	4614	0.43	18.53	2985	0.43	11.30
FFP+K+M	4854	0.43	22.37	3348	0.44	17.10

		nu	trition	1		
Treatment		Rice	4-1-5-0		Wheat	
	N uptake (kg/ha)	% increase	N absorbed unit ⁻¹ DM	N uptake (kg/ha)	% increase	N absorbe
*[]	Modipuram (n=24)					
FFP	95.0	-	8.30	75		8.01
FFP+K	110.4	16.2	8.37	89	18.7	8.29
FFP+K+M	117.7	23.9	8.46	96.1	28.1	8.49
		Sa	bour (n=24)			
FFP	68.4		8.25	39.9		7.39
FFP+K	92.6	35.4	8.62	52.2	30.8	7.56
FFP+K+M	97.4	42.4	8.68	58.4	46.4	7.67

Response (kg/kg of nutrient) in sugarcane as influenced by balanced fertilization

Treatment	N	Р	K	S
N ₂₀₀	307			-
N ₂₀₀ P ₁₀₀	400	1816		
N ₂₀₀ P ₁₀₀ K ₁₅₀	461	2095	750	1
N ₂₀₀ P ₁₀₀ K ₁₅₀ S ₆₀	505	2295	821	1683
N ₂₀₀ P ₁₀₀ K ₁₅₀ S ₆₀ Mg ₃₀	553	2514	899	1848

Singh et al., 2008

This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient
Management for End Production, Outsit

Balanced fertilization improves NUE

(Rice, on-farm trials, Punjab)

Sites	AE _N (kg grain/kg N)			PFP _N (kg/ha)		
	FP	SSNM	Increase (%)	FP	SSNM	Increase (%)
1	9.27	18.3	97	36.7	51.2	40
2	8.31	16.4	97	31.9	45.4	42
3	9.69	13.3	37	49.2	50.0	2
4	13.0	16.4	26	42.3	43.6	3
5	8.32	17.1	106	29.0	40.0	38
6	7.56	17.9	137	23.1	35.7	55
All	8.79	16.1	83	34.7	44.2	27

Khurana et al., 2007

Grain yield of pearlmillet-wheat system under different nutrient supply options

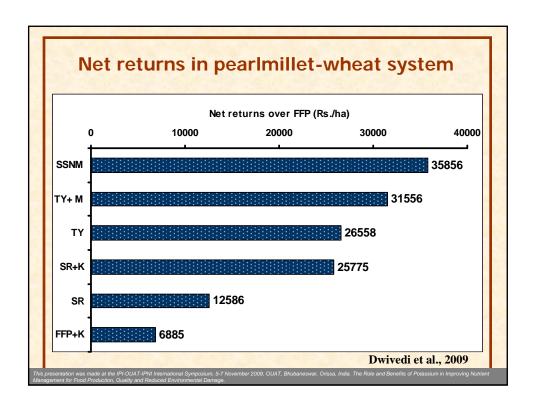
Treatment	Grain yield (t/ha)					
rreatment	Pearlmillet	Wheat	PMEY*			
SSNM	4.12	5.61	13.69			
TY	3.65	4.88	11.97			
TY+Micro	3.93	5.27	12.91			
SR	3.10	4.03	9.97			
SR+K	3.68	4.83	11.92			
FFP+K	2.60	3.78	9.05			
FFP	2.21	3.40	8.00			

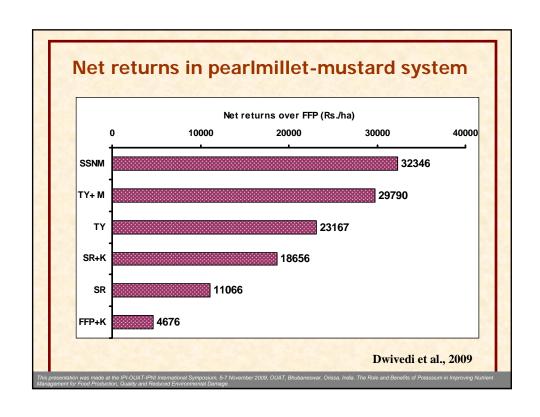
*Pearlmillet equivalent yield

Dwivedi et al., 2008

This presentation was made at the IPI-OUAT-IPIN International propositing. 3.7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient.

Management for Econd Provide in Ouisibus and Participal Engineering and Parti


Grain yield of pearlmillet-mustard system under different nutrient supply options


	Grain yield (t/ha)				
Treatment	Pearlmillet	Mustard	PMEY*		
SSNM	4.05	2.88	12.83		
TY	3.50	2.45	10.96		
TY+Micro	3.83	2.76	12.23		
SR	3.08	1.93	8.96		
SR+K	3.52	2.18	10.17		
FFP+K	2.73	1.71	7.94		
FFP	2.36	1.56	7.12		

*Pearlmillet equivalent yield

Dwivedi et al., 2008

This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 N

Conclusions

- High annual productivity levels need high N dressings that lead to gradual K depletion even in high K soils.
- Fertilizer N application have to be necessarily balanced with K to achieve higher NUE.
- There is no worth of worrying for NUE if the soil is low in K or fertilizer input is unbalanced.
- Balanced fertilization does not mean a fixed N:K₂O or N:P₂O₅:K₂O rates; fertilizer K rates to be supplemented with N would vary according to crop K demand, soil K status and K supplying capacity of soil.

This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient

Future R&D thrust

- Studying K×N interaction beyond crop yields
- Developing micro-scale digitized soil fertility maps, preferably at block or village panchayat level, to help formulation of balanced fertilizer recommendations
- Enhancing farmers' awareness on inclusion of K in fertilizer schedule
- Greater understanding of SSNM
- Development and refinement of crop residue recycling technologies

Availability of K fertilizers!

