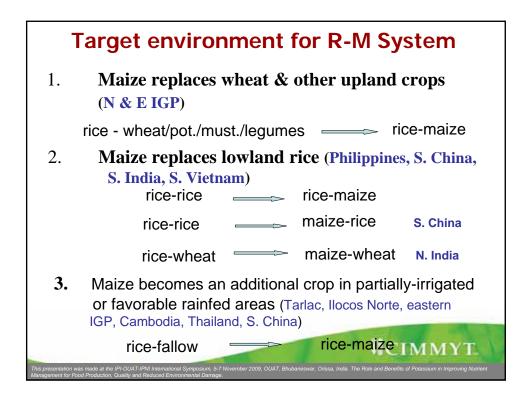
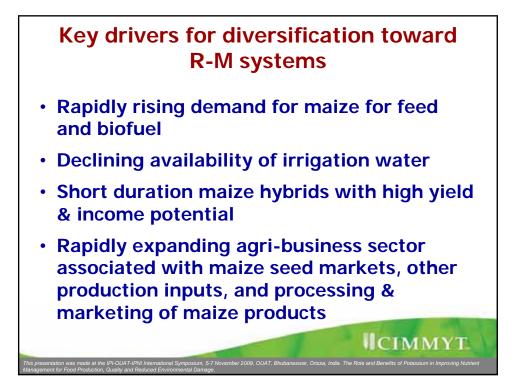


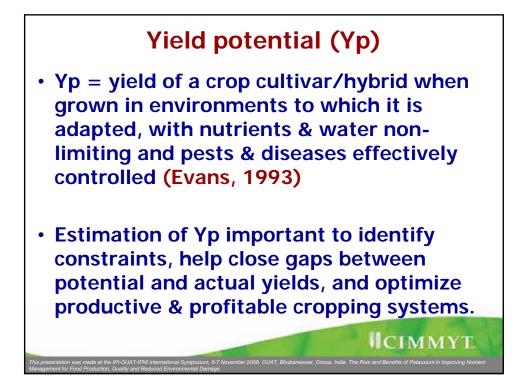
Area under major rice-based cropping systems in four south Asian countries

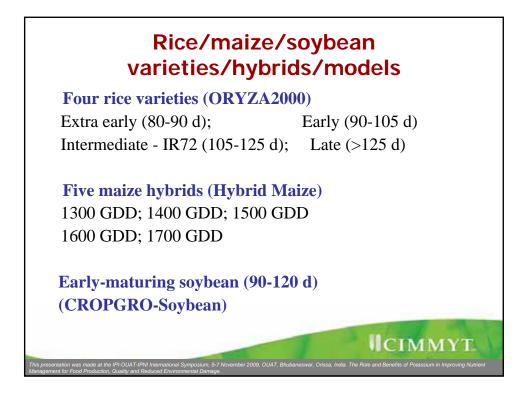
Cropping Systems	Area (Mha)					
cropping systems	Bangladesh	India	Nepal	Pakistan		
Rice-rice	4.50	4.70	0.30			
Rice-rice-rice	0.30	0.04				
Rice-wheat	0.40	10.30	0.57	2.20		
Rice-maize	0.35	0.53	0.43	NA		
Maize-wheat		1.80	0.04	1.00		
Rice-pulses		3.50				
Rice-vegetable		1.40				
Millet-wheat		2.44				
Rice-potato	0.30	NA				
Cotton-wheat		NA		3.10		

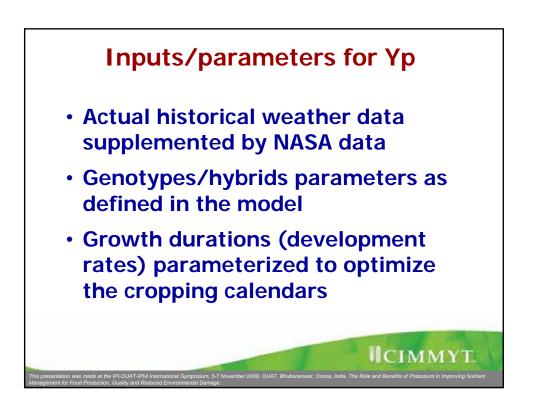

	Country		Area (Mh	ia)
- hand		Rice	Maize	R-M
	Philippines	4.2	2.6	0.12
	Indonesia	11.8	7.8	1.55
Lagran - mark	Vietnam	7.3	1.1	0.32 **
and Anti-	China	29.1	26.4	-
	Thailand	10.0	1.1	0.04 **
	India	43.4	7.8	0.53
	Bangladesh	10.5	0.38	0.35
🔰 👋 🍊 👘	Nepal	1.6	0.9	0.43 **
	Total	117.9	53.8	3.3
Surger (- 5	HCD	(exc. China)

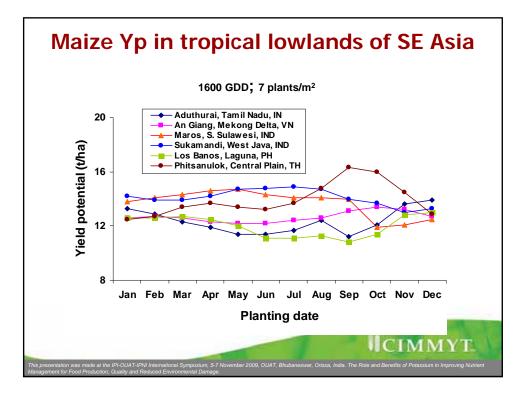


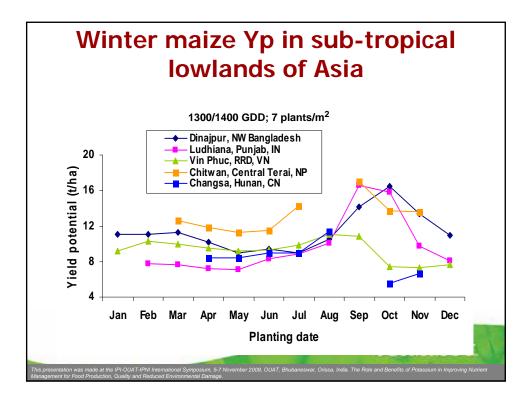
Main cropping systems involving rice and maize in different ago-climatic zones of India

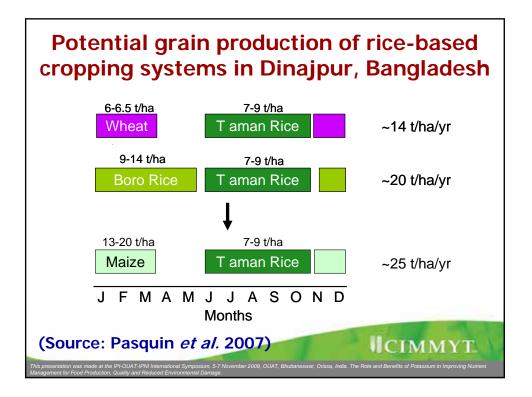

Agro-climatic region	Cropping	system
	Irrigated	Rainfed
Eastern Himalayan region	Summer rice-maize-mustard	Sesame-rice+maize
Lower-Gangetic Plain region	Autumn rice-maize Jute-rice-maize	Rice-maize
Upper-Gangetic Plain region	Rice-potato-maize	
Eastern Plateau & Hills region		Rice-potato-maize
Southern plateau & Hills region	Maize-rice Rice-maize	
East Coast Plain and Hills region	Rice-maize-pearl millet Maize-rice Rice-maize Rice-rice-maize	Rice-maize + cowpea
West Coast Plain and Hills region	Rice-maize	Rice-maize
Gujarat plains and hills region		Rice-maize
Island region	Rice-maize	Maize-rice Rice-maize + cowpea Rice-maize-urdbean Rice-rice-maize

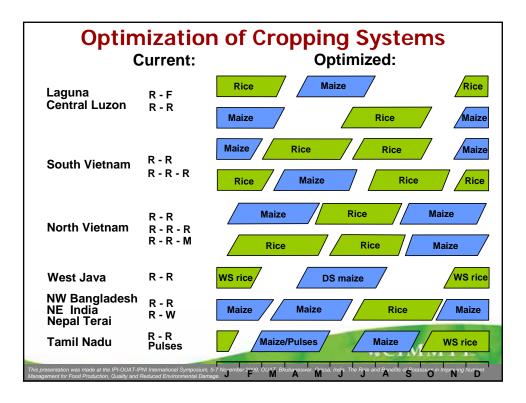

Key features	Current systems	Emerging systems	Key examples
1. Tropical, warm, humid and sub-humid, no wi	nter		
Tropical, high rainfall; mostly in a dry season – wet season pattern; both rice and maize not limited by low temperatures and can be grown all year round	R – R, R – Fallow	R – M, M – R	Laguna, Central Luzon, Philippines; West Java, Central Java, North Sumatra, South Sulawesi, Indonesia; Central & lower north Plain, Thailand
	$\begin{array}{l} R-R-R\\ R-R-M\\ R-M-M \end{array}$	$\begin{array}{c} R-M-R\\ R-R-M\\ R-M -M \end{array}$	Mekong Delta, Vietnam; East Java, Central Lampung, Indonesia
2. Tropical, warm, semiarid, no winter			
Tropical monsoon with longer dry season; both rice and maize not limited by low temperatures and can be grown all year round	R-R, R – R – pulses	R – M	Cauvery Delta, Tamil Nadu, India; Karnataka, India; A.P., India
3. Sub-tropical, sub-humid, warm summer, mild	cool winter	•	•
Sub-tropical monsoon with cool winter and summer rainfall; rice but not maize maybe limited by low temperatures	R – W R – Boro rice	R-M, R-R-M	Central, western, and NW Bangladesh; Eastern Terai, Nepal; West Bengal, eastern UP and Bihar, India; Red River Delta, Vietnam
4. Sub-tropical to warm temperate, sub-humid, s	semiarid, warm	summer, mild to	severe cold winter
4.1. Sub-tropical monsoon with cold winter and summer rainfall; both rice and maize limited by low temperatures and can't be grown for some time in winter	$\mathbf{R} - \mathbf{W}$	R – M	North and NW India; Central and western Terai and mid-hills, Nepa
4.2. Sub-tropical to warm temperate, with severe cold winter; both rice and maize limited by low temperatures and can't be grown for some time in winter	R – R, R – Fallow	M – R, R – M	South Central China (Hunan, Hubei), Southeas China (Jiangsu, Zhejiang)
4.3. Sub-tropical to warm temperate, semiarid, with hot summer and cool to cold winter; very low rainfall; both rice and maize limited by low temperatures and can't be grown for some time in winter	R – W, Cotton-wheat, Sorghum-wheat	R-M, M-W, R -potato- M	Punjab and Sindh, Pakistan A Y T
This presentation was made at the IPL CUAT IPMI International Symposium, 5.7 M Management for Food Production, Quality and Reduced Environmental Damage.	iovember 2000, OUAT, Dhe	ibanoswar, Orissa, India. Th	Timsina, 200






		Ri	ce	Maize		
Country	Location	Variety	Yp (t/ha)	Hybrid	Yp (t/ha)	
Bangladesh 1	Bogra	Extra short	4.4-8.1	1500	8.8-12.6	
		Short	5.2-9.6	1600	9.8-16.8	
		Intermediate	6.4-11.0	1700	10.9-18.3	
		Long	7.8-11.5	1800	12.0-19.6	
	Dinajpur	Extra short	4.5-9.0	1500	9.0-16.5	
		Short	5.1-10.2	1600	10.2-18.1	
		Intermediate	6.1-12.3	1700	11.2-19.3	
		Long	6.2-14.5	1800	12.2-20.4	
	Jessore	Extra short	4.3-7.5	1500	8.7-14.2	
		Short	5.5-9.0	1600	9.7-16.0	
		Intermediate	7.0-10.4	1700	10.7-17.7	
		Long	8.2-12.9	1800	11.8-19.0	


Yield potential (Yp) of rice varieties and maize hybrids for several locations in four south Asian countries


				The	d Potenti
Nonal	Chitwan	Extra short	1.6-8.7	1500	11.3-27.4
Nepal	CHILWAII	Short	1.7-9.3	1600	13.1-29.7
		Intermediate	1.9-10.9	1700	14.1-31.3
		Long	2.1-14.4	1800	15.4-32.7
Pakistan	Larkana	Extra short	2.1-7.0	1400	6.2-17.2
		Short	2.5-8.0	1500	7.0-19.2
		Intermediate	2.8-9.5	1600	7.8-20.7
		Long	3.8-11.5	1700	8.6-21.9
	Okara	Extra short	0.6-4.7	1300	5.8-17.7
		Short	0.7-5.6	1400	6.7-18.4
		Intermediate	0.6-8.0	1500	7.6-18.4
		Long	0.7-10.0	1600	8.4-22.4
					-
			1	IIC	IMMYT

					Yield Poten
India	Begusarai	Extra short	4.6-8.9	1500	8.1-14.9
		Short	5.5-9.9	1600	9.2-16.9
		Intermediate	7.4-11.5	1700	10.4-18.5
		Long	6.2-14.8	1800	11.4-19.7
	Aduthurai	Extra short	4.0-6.3	1500	9.1-11.2
		Short	5.4-7.7	1600	10.2-12.5
		Intermediate	6.5-9.7	1700	11.2-14.0
		Long	8.4-11.9	1800	12.3-5.0
	Thanjavur	Extra short	4.1-6.1	1400	9.2-11.1
		Short	5.1-7.5	1500	10.2-12.4
		Intermediate	6.9-9.4	1600	11.1-13.6
		Long	8.7-11.5	1700	12.2-14.7
	Bangalore	Extra short	6.4-7.7	1400	10.0-13.3
		Short	7.9-9.2	1500	11.2-14.9
		Intermediate	10.0-11.5	1600	12.3-16.4
		Long	12.2-13.8	1700	13.6-17.6
	Nalgonda	Extra short	4.8-7.0	1400	7.7-12.6
		Short	5.1-8.3	1500	9.1-14.2
		Intermediate	6.1-10.6	1600	10.0-15.8
		Long	8.2-12.6	1700	10.7-17.0
	Ludhiana	Extra short	3.0-8.8	1500	7.1-16.6
		Short	2.9-10.8	1600	8.2-20.4 T
		Intermediate	3.0-12.8	1700	9.0-23.7
esentation was m	ade at the IPI-OUAT-IPNI Inten Production, Quality and Reduced	national Symposium, 5-7 Novembe	er 2009, OUAT, Bhubaneswar, Oris	sa, India. The Role and Be	nefits of Potassium in Improving Nutri 9.8-26.0

Grain yield (t/ha) of rabi maize in 10 farmers' fields in an SSNM experiment at two districts in NW Bangladesh in 2008-2009

Treatments	Rangpur	Rajshahi
N omission	0.5-5.1	3.4-3.9
P omission	3.9-8.3	4.5-8.5
K omission	4.1-8.1	5.3-7.9
Low P	5.5-8.8	6.2-8.9
Low K	5.8-9.8	6.5-8.6
NPK	6.0-10.3	6.7-10.3
NPKSZn	6.0-10.4	7.2-10.8

Grain yield of rice & maize, and rice-maize system productivity (MEY), in an SSNM experiment Rice Maize **R-M system** Treatment yield yield productivity (t/ha) (t/ha) (MEY) State Rec 4.98 11.23 6.53 SSNM 5.76 8.06 13.50 SSNM-N 4.88 4.86 9.47 SSNM-P 5.01 6.52 11.25 SSNM-K 5.00 6.65 11.37

715.65

232.1

(Source: ML Jat, unpublished data)

CD(P=0.05)

ПСІММУТ

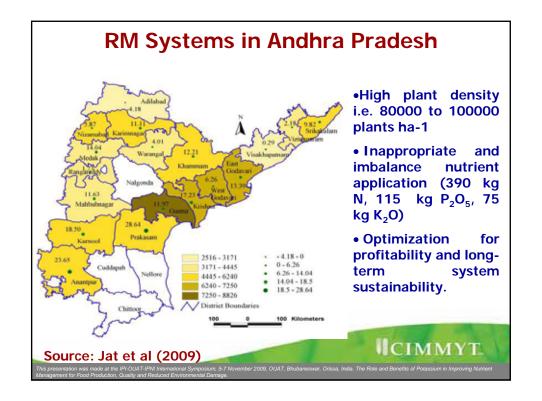
ICIMMYT

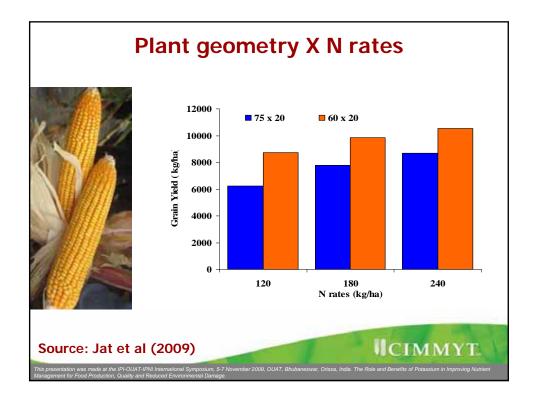
Effect of nutrient management practices on grain yield of maize at different locations in India

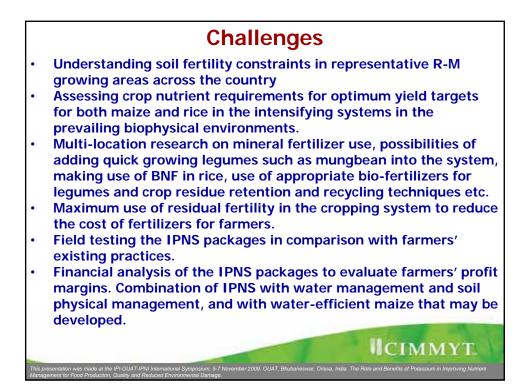
Nutrient	Grain yield (t/ha)								
management	Delhi	Bajaura	Udhampur	Dholi	Ludhiana	Pantnagar	Banswara	Ranchi	
State recommendation	7.78	5.69	4.06	3.65	6.76	4.44	5.93	3.69	
SSNM	7.94	7.21	4.52	4.96	6.98	5.09	6.94	4.46	
SSNM-N	4.46	2.76	2.26	3.21	5.87	3.11	1.72	2.78	
SSNM-P	7.71	5.84	3.41	3.41	6.76	3.78	6.19	4.33	
SSNM-K	7.36	5.87	4.41	3.69	7.33	5.22	6.41	3.89	

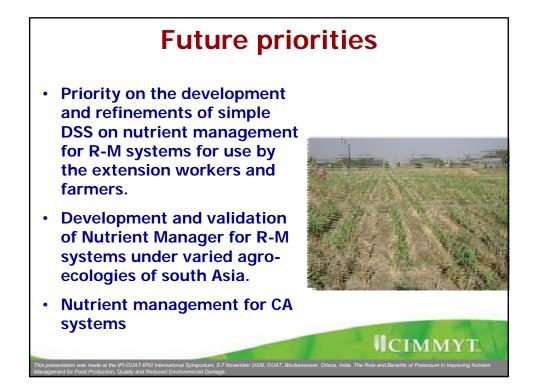
Source: ML Jat, unpublished data

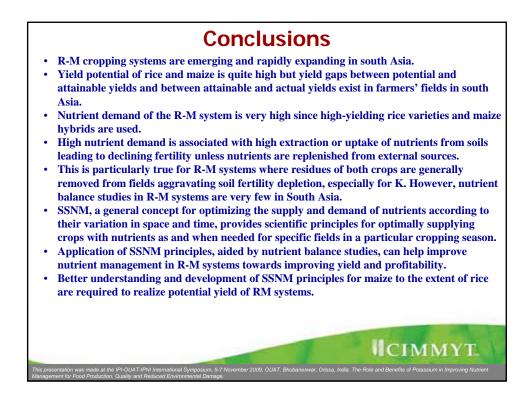
Treatment	Grain yield (t/ha)	% increase over FFP	Net return (Rs/ha)	B: C ratio
FFP	6.75	-	23,355	1.19
FFPK	7.58	12.3	27,693	1.37
FFP+KS+Zn	8.06	17.28	28,755	1.31
FFPS+ Zn	7.26	6.32	24,440	1.14
CD (P=0.05)	0.54	-	736	-


Source: VK Singh (2009) Unpublished, PDFSR, Modipuram YT


entation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhut nent for Food Production, Quality and Reduced Environmental Damage.


		GY	Residue	K +S Zn	S Zn	к	K response
TCE	Nutrient	(t ha-1)	yield effect	Response	response	response	with TCE
TPR-CTM/-R	NP	7.67					
TPR-CTM/-R	NPK+SZn	8.72		1.06			
TPR-CTM/-R	NP+SZn	8.23	8.207		0.57	0.49	
TPR-CTM/+R	NP	8.25					
TPR-CTM/+R	NPK+SZn	8.88		0.63			
TPR-CTM/+R	NP+SZn	8.60	8.577		0.35	0.28	0.39
DSR-ZTM-R	NP	6.33					
DSR-ZTM-R	NPK+SZn	7.42		1.09			
DSR-ZTM-R	NP+SZn	6.84	6.862		0.51	0.58	
DSR-ZTM+R	NP	6.69					
DSR-ZTM+R	NPK+SZn	7.55		0.86			
DSR-ZTM+R	NP+SZn	7.12	7.119		0.43	0.43	0.50
ZT R/ZTM-R	NP	5.83					
ZT R/ZTM-R	NPK+SZn	6.72		0.88			
ZT R/ZTM-R	NP+SZn	6.28	6.276		0.45	0.44	
ZT R/ZTM+R	NP	6.23					
ZT R/ZTM+R	NPK+SZn	6.77		0.54			
ZT R/ZTM+R	NP+SZn	6.45	6.485		0.22	0.32	0.38


TCE	Nutrient	GY (t ha ⁻¹)	Residue yield effect	K +S Zn Response	S Zn response	K response	K response with TCE
TPR-CTM/-R	NP	7.19					
TPR-CTM/-R	NPK+SZn	8.12		0.93			
TPR-CTM/-R	NP+SZn	7.62	7.641		0.42	0.50	
TPR-CTM/+R	NP	7.47					
TPR-CTM/+R	NPK+SZn	8.37		0.91			
TPR-CTM/+R	NP+SZn	7.74	7.861		0.28	0.63	0.57
DSR-ZTM-R	NP	7.28					
DSR-ZTM-R	NPK+SZn	8.23		0.95			
DSR-ZTM-R	NP+SZn	7.80	7.769		0.52	0.43	
DSR-ZTM+R	NP	7.99					
DSR-ZTM+R	NPK+SZn	8.70		0.71			
DSR-ZTM+R	NP+SZn	8.40	8.362		0.41	0.30	0.37
ZT R/ZTM-R	NP	7.26					
ZT R/ZTM-R	NPK+SZn	8.54		1.28			
ZT R/ZTM-R	NP+SZn	8.23	8.010		0.97	0.31	
ZT R/ZTM+R	NP	8.67					
ZT R/ZTM+R	NPK+SZn	9.42		0.75			
ZT R/ZTM+R	NP+SZn	8.90	8.995		0.23	0.52	0.41
Source: V	/K Singh	(200 9) Unpubl	ished, PDI	SR, Mod	lipuram	MYT


		RM-GY	Residue	K +S Zn	S Zn	K	K response
TCE	Nutrient	(t ha-1)	yield effect	Response	response	response	with TCE
TPR-CTM/-R	NP	14.86					
TPR-CTM/-R	NPK+SZn	16.84		1.98			
TPR-CTM/-R	NP+SZn	15.85	15.85		0.99	0.99	
TPR-CTM/+R	NP	15.72					
TPR-CTM/+R	NPK+SZn	17.26		1.54			
TPR-CTM/+R	NP+SZn	16.34	16.44		0.63	0.91	0.95
DSR-ZTM-R	NP	13.61					
DSR-ZTM-R	NPK+SZn	15.65		2.04			
DSR-ZTM-R	NP+SZn	14.64	14.63		1.03	1.01	
DSR-ZTM+R	NP	14.68					
DSR-ZTM+R	NPK+SZn	16.25		1.57			
DSR-ZTM+R	NP+SZn	15.52	15.48		0.84	0.73	0.87
ZT R/ZTM-R	NP	13.09					
ZT R/ZTM-R	NPK+SZn	15.26		2.16			
ZT R/ZTM-R	NP+S7n	14.51	14.29	-	1.42	0.75	
ZT R/ZTM+R		14.90					
ZT R/ZTM+R	NPK+SZn	16.19		1.29			
ZT R/ZTM+R	NP+SZn	15.35	15.48		0.45	0.84	0.79

