

Nutrient Management Options Available

- Selection of Suitable Crops/Cropping Systems
- Improved Nutrient Management Practices
- Balanced Fertilization through Inorganic Fertilizers
- Integrated use of Fertilizers and Organic Manures
- Soil Test Based Fertilizer Recommendations
- Conservation Agriculture Practices

Сгор	Control Yield Ay (kg/ha) (k	N	AE _N (kg gr	Increase	
		(kg/ha)	N Alone	+PK	$\begin{array}{c c} \mathbf{III} \mathbf{AE}_{\mathbf{N}} \\ (\%) \end{array}$
Rice (wet season)	2,740	40	13.5	27.0	100
Rice (Summer)	3,030	40	10.5	81.0	671
Wheat	1,450	40	10.8	20.0	85
Pearl millet	1,050	40	4.7	15.0	219
Maize	1,670	40	19.5	39.0	100
Sorghum	1,270	40	5.3	12.0	126
Sugarcane	47,200	150	78.7	227.7	189

	STCR A	Appro	ach		
Crops	Treatment	Nutrient dose (kg/ha)			Yield
		Ν	P ₂ O ₅	K ₂ O	(Kg/na)
Wheat	STCR target 5 t/ha	126	41	49	4887
	State Recommendation (SR)	120	40	60	4567
	Farmers' Practice (FP)	80	0	57	3662
Pearl- STCR millet	STCR target 5 t/ha	100	43.5	42	2540
	SR	80	40	40	2020
	FP	46	0	23	1360
Mustard	STCR target 2.55 t/ha	97	35	75.5	2281
	SR	100	40	40	1890
	FP	60	0	57	1312

Nutrient Potentials of Organics and their Availability

Manure	Total quantity available (mt)	Total nutrients (000t/yr)			r)
		Ν	P ₂ O ₅	K ₂ O	Total
Cattle dung manure	279	2813	2000	2069	6882
Crop residue	273	1283	1966	3904	7153
Rural compost	285	1431	861	1423	3715
City refuse	14	98	64	112	294
Sewage sludge	0.5	5	3	3	11
Press mud	3	33	79	56	168

Resource	2000	2010	2025
Resources (theoretical potantial) ¹			
Human excreta (dry) (million t)	16.5	18.5	21.5
Livestock dung (sun dry) (million t)	375	396	426
Crop residues (million t)	300	343	496
Nutrients (theoretical potential) ¹	1	1	I
Human excreta (million t $N+P_2O_5+K_2O$)	2.00	2.24	2.60
Livestock dung (million t $N+P_2O_5+K_2O$)	6.64	7.00	7.54
Crop residues (million t $N+P_2O_5+K_2O$)	6.21	7.10	20.27
Nutrients (considered tappable) ²			
Human excreta (million t $N+P_2O_5+K_2O$)	1.60	1.80	2.10
Livestock dung (million t $N+P_2O_5+K_2O$)	2.00	2.10	2.26
Crop residues (million t $N+P_2O_5+K_2O$)	2.05	2.34	3.39
Total	5.05	6.24	7.75
All data pertaining to nutrients in dung and in residues are counted Tanable = 30% of dung, 80% of excreta, 33% of cron residues.	ed twice to the exte	nt these are fed t	to the animals

Selection of Suitable Cropping Systems

Growing of leguminous fodder and Feeds, inclusion of legumes, oil seeds, pulses in inter crops, crop rotations and cover crops

- Different crops tap different soil layers for meeting their nutrient and water requirements depending upon their root and shoot system
- Help in meeting part of heavy N needs of modern intensive cropping systems such as rice-rice, rice-wheat, maize-wheat etc.
- Help in sustaining soil organic C status in the long run.
- Some legumes have the ability to solubilize concluded P and highly insoluble Ca bound P by their root exudates.

ey (%)
3
6
7
5
6 7 5 · (

Trend of Soil Fertility Status

- First soil fertility map of Ramamurthy and Bajaj (1969) showed 4% soils were high in available P.
- In 2002, around 20% of soils are high in available P status.
- Need to utilize residual P or accumulated P.
- (i) Soil test maintenance P requirement.
- (ii)Residual P management strategy.

Residual P Management of Black Soils under Soybean-Wheat System

- Fertilizer-P applied to soybean showed residual effects in two succeeding crops while the P applied to wheat had a significant residual effect on only one succeeding crop.
- The P applied to soybean was more efficiently utilized than that applied to wheat in the system.
- On P deficient black soils, application of 39 kg P/ha to either soybean or wheat and no P to the following crop in the soybean-wheat rotation produced similar yield as 26 kg P/ha each to soybean and wheat. This strategy had saved 13 kg P/ha/year.

P supply Soil strategy maintenan (PSS)* requirem (STMPR)	Soil test maintenance P requirement (STMPR) of	Yield levels of rotational crops at STMPR (Mg ha ⁻¹)		Total annual removal at STMPR	
	soybean-wheat rotation (kg ha ⁻¹ yr ⁻¹)	Soybean	Wheat	(kg na'' yr'')	
PSS-I	36.1 (22.2 + 13.9)@	1.91	4.10	25.2	
PSS-II	26.3 (16.2 + 10.1)	1.86	4.06	23.4	
PSS-III	24.1 (14.8 + 9.3)	1.90	4.01	23.7	
* PSS-I, (FYM) and wheat was [@] Figures wheat rota	PSS-II and PSS-III imp d integrated (fertilizer+) solely through fertilizer in parentheses indicate t tion obtained by splittin	ly P supply thr (YM) sources, r under all strateg he P rates for co g STMPR in the	ough inorganic espectively to s ies. omponent crops e same ratio of	(fertilizer), organi oybean. P supply t of annual soybean 1.6:1 as was used i	

Strategies for enhancing P use efficiency in crops in acid soils.

Agro-climatic zone	Strategy
Western Himalayan region (pH <6.0)	Apply 60 kg P ₂ 0 ₅ /ha as a mixture of SSP and rock phosphate in a ratio of 1:2 to maize. However, apply SSP to following wheat for higher FUE.
Eastern Himalayan region (pH<5.1)	Apply 30 kg P_2O_3 /ha to summer as well as monsoon rice in the form of rock phosphate or a mixture of SSP and RP in 1:1 ratio.
Brahmaputra Valley	Apply MRP at 40 kg P_2O_5 /ha at 20 day before rice transplanting
Lower Gangetic Plain region	Use SSP and rock phosphate in 1:2 ratio as basal dressing for higher P use efficiency.
Central Plateau & Hills region	Recommended P dose is 60 kg P_2O_5 /ha as rock phosphate.
Southern plateau & Hills region	Rhizobium inoculated seed should be treated with 1.5 kg of finely powdered lime (300 mesh). Liming rate should be determined by soil test method and the rate should be such that it can only upset the Al toxicity and does not impair the K and Ca balance.
East Coast Plains & Hills region West Coast Plains & Hills	Apply 60 kg P_2O_5 /ha as rock phosphate 3 weeks before transplanting.
	Agro-chinate Zone Western Himalayan region (pH <6.0)

Productivity (kg ha⁻¹) under balanced and imbalanced use of nutrient at Bangalore

Centre/ Cropping System	Control	N	NP	NPK	NPK+ FYM	NPK+ Lime
Bangalore (Alfisols)	1					
Finger millet (2005)	426	392	432	4009	4416	3688
Average (17 years)	591	761	978	4313	4855	4127
Maize (2004-05)	118	75	175	2020	2453	2242
Average (17 years)	280	396	635	2113	2530	2292

- About 336 million tonnes of crop residues are produced per year which can supply about 5.1 million tonnes of K.
- Several strategies have been developed for efficient recycling of mechanical borne wheat and rice residues.

Effect of Wheat Residue Management Options and	I N
Sources on Soybean seed Yield (kg/ha)	

N sources	Wheat residue management options for soybean					
	Burning	Soil incorporation	Surface retention			
Control	402	440	459			
Fertilizer-N	525	608	600			
FYM	611	696	690			
PM	588	656	678			
GLM	505	567	579			
l.s.d.(P=0.05)	ROM-23.3	N source-27.5	RMOxN source-NS			
Source: R	eddy (200	7)				

2.Value Added Compost with Mica Waste

- India has the world's largest deposits of mica.
- Mica contains about 8-10% K₂O.
- 75% of muscovite mica in electrical industry generated as the waste.
- Nishant and Biswas (2007) developed enriched compost using rice straw, dung, rock phosphate and waste mica.
- Biotite mica is rarely used for any commercial purpose but very large reserves are available.

3. Mobilization of K from indigenous minerals

- About 938 million tonnes of glauconite sandstones in Satna district of M.P. and adjoining U.P.
- It contains about 5.4% K₂O.
- Techniques such as composting, partial acidulation should be developed for solubilizing K from glauconite.

4. Situations Which Need Split Application of K

- Rice grown in light textured soils and acid soils in high rainfall areas in order to reduce leaching losses;
- Low tillering and late maturing varieties, where the natural supply of K from soil plus irrigation wiii decreases in the later stages of crop growth
- In highly reduced soils where conditions may hinder K uptake; and
- During the monsoon season, several studies conducted in Tamil Nadu, Uttar Pradesh, West Bengal and Tripura states have indicated the beneficial effect of application of K in 2-3 splits in rice.

5. Higher Doses of K to Heavy Feeders

- Potato, Tapioca
- Plantation crops like Tea, Rubber, Coconut
- Leafy vegetables such as Cauliflower, Cabbage
- Forage crops like Alfalfa
- Leaf quality Tobacco

S Management Strategies

- Fertilizers S application should be based on available sulphur status of soils.
- Sulphur application may preferably made prior to sowing or bud initiation are flowering under moist conditions.
- Efficient utilization of residual S (accumulated S).

Available S (mg/kg) in soil	S fertility class	Amount of S to b applied (kg/ha)
<5	Very low	60
6-10	Low	45
11-15	Medium	30
16-20	High	15
>20	Very High	0

Strategies Application of 5 kg Zn/ha is sufficient on alluvial, red and laterite soils. 10 kg Zn/ha is optimum on Vertisols. 5-10 kg Zn/ha had significant residual effect for 3-6 crops without reduction in yield. 1-1.5 kg B/ha to alternate crops for oilseed based cropping systems. Regular application of FYM 8-10 t/ha can control micronutrient deficiencies. When 4-5 t/ha FYM is applied, Zn rate can be reduced by 50%.

Situation	Component of balanced fertilization (Nutrients whose application needed)
Red and lateritic soils	N, P, K with lime
Newly reclaimed alkali soils	N & Zn
Many areas in alluvial soils, wheat belt	N, P, K, Zn & S / N, P, Zn & S / N, P & Zn / N, P, K, & Zn
Many areas under oil seeds	N, P, K, & S / N, P, & S / N, P, Zn & S / N, P, S & B
Legumes in oilseeds	N, P, K, Ca & Mo
Malnad area of Karnataka	N, P, K, Mg, S and Zn
High yielding tea plantation	N, P, K, Mg, S and Zn

Future Research

- Precision agriculture is likely to play a greater role in which site-specific nutrient management has to be coupled with temporal specific nutrient needs of crop. Very little work has been done on this aspect.
- Nutrient management strategies need to be developed for mobilizing nutrients from indigenous and cheaper minerals and industrial by-products so that pressure on costly imported fertilizers can be reduced.
- Plant analysis, usually used for horticultural and vegetable crops, must be made more popular.

