

Estimates of N₂O Emissions from Cropland in 1995 (adapted from IFA/FAO, 2001)

	Area		Animal	N ₂ O-N emitted			
Region	(million	Fertilizer N Applied	Manure N Applied	total	Fertilizer	-induced 1	
	na)		million tonn	es		% of total	
Canada	46	1.58	0.21	0.067	0.016	24	
U.S.	190	11.15	1.58	0.316	0.112	35	
World	1,436	73.48	20.66	3.150	0.735	23	

¹ Estimated using IPCC emission factor of 1%

In 2007, fertilizer N use and application accounted for the following portion of direct ag soil management related N_2O emissions: Canada 47%, U.S. 28%, EU-15 27%.

Crutzen et al. (2008) suggest terrestrial and aquatic N₂O-N emissions may range from <u>2 to 5</u>% of "new N" (Atmos. Chem. Phys., 8, 389–395)

Cropland Management Measures to Help Mitigate GHGs

	Mitig	ative effec	tsa	Net miti (confic	gation ^b lence)
Examples	CO2	CH4	N ₂ O	Agreement	Evidence
Agronomy	+		+/-		
Nutrient management	+		+	***	**
Tillage/residue management	+		+/-		**
Water management (irrigation, drainage)	+/-		+		
Rice management	+/-	+	+/-	**	**
Agro-forestry	+		+/-		
Set-aside, land-use change	+	+	+		***

Smith et al. 2007. Agriculture. In Climate Change 2007: Mitigation. IPCC

Crop	Soil Type/Soil	Yield without	Increase	Net Return
	K Fertility	K application	(kg/ha) in yield	Rs./Re invested
	Status	(kg/ha)	by Potash	on potash
			application at	
			indicated rate	
			(kg K2O/ ha)	
Pearlmillet	Low K	1730	570 (K120)	3.09
	Medium K	1819	710 (K120)	3.86
	High K	1920	570 (K120)	3.09
Rice	Silty loam	7000	620 (K80)	5.53
	Loamy sand	4460	310 (K80)	2.76
Wheat	Silty loam	4100	640 (K80)	6.68
	Loamy sand	3250	330 (K80)	3.44
Mustard	loam	1690	360 (K80)	8.06
Cotton	Loamy sand	1320	110 (K30)	8.26
Sugarcane (t/ha)	Planted	49.0	4.60 (K50)	8.59
	Planted	53.0	4.30 (K50)	8.03
	Ratoon	52.9	4.50 (K75)	5.61
Compiled from va	rious sources			

Cropping	system		G	WP in CO_2 ec	uivalent	s, kg/ha	/yr	Mean crop yields, t/ha	Food yield ¹	
Location	Rotation ⁴	Tillage	Soil C5	N fert. production ⁶	fuel	N ₂ O	Net GWP	N₂O GWP/	Net GWI	> /
MI ²	C-S-W	СТ	0	270	160	520	1,140	Food Yield	Food Yi	eld
MI ²	C-S-W	NT	-1,100	270	120	560	140	43	95	
MI ²	C-S-W low input with legume	СТ	-400	90	200	600	630	43	11	
MI ²	C-S-W organic with legume	СТ	-290	0	190	560	410	50	53	
NE ³	CC BMP	СТ	-1,613	807	1,503	1173	1,980	62	46	
NE ³	CC	СТ	-2,273	1,210	1,833	2090	3,080			
NE ³	C-S BMP	СТ	1,100	293	1,283	917	3,740	24	41	
NE ³	C-S intensive	СТ	-73	660	1,613	1247	3,740	41	60 107	
MI ²	Cropland conversion to poplar forest	NT	-1,170	50	20	100	-1,050	34	107	
¹ Food er ² Rainfed ³ Irrigated ⁴ C-S-W ⁵ Estimat cm in the ⁶ GWP for studies r	nergy calculate d cropping syst d cropping syst e corn – soyb tes of net soil (NE study. Shor manufacture respectively.	ed from (tem (Rot stem (Ad- ean – wh C storage allower s e and trai	crop yield pertson ef viento-Bo neat; CC = e are bas sampling nsport of	s and USDA r al., 2000) rbe et al., 200 = continuous (ed on change depths tend to fertilizer N wa	national 27) corn s in soil o upward s assum	C mease C mease dly bias t ned to be	database ured to a the C seq 4.51 and	nal.usda.gov/l depth of 7.5 cm in the M uestration estimates in n ا 4.05 kg CO ₂ /kg N in the	NDL/index.html study and 30 o-till systems. MI and NE	

Summary of N₂O Emissions Induced by Common Fertilizer N Sources (based on

Bouwman et al. (2002a, 2002b) and Stehfest and Bouwman (2006))

	Mean fertilizer induced emission		Balan	ced median emission ²	
	1	N ₂ O as % of		kg N ₂ O-N	
N source	n	applied N	n	ha ⁻¹	
calcium ammonium					
nitrate	61	0.7	73	1.56a ³	
ammonium nitrate	59	0.8	131	1.12a	
anhydrous ammonia	38	0.9	38	1.04a	
nitrate-based					
fertilizers ⁴	53	0.9	53	0.80b	
urea ammonium					
nitrate (solutions)	37	1.0	40	0.78b	
urea	98	1.1	131	0.96b	
ammonium-based					
fertilizers ⁵	59	1.2	74	0.82b	
IPCC default		1			

Agricultural policy has to consider food security in India – no other option

