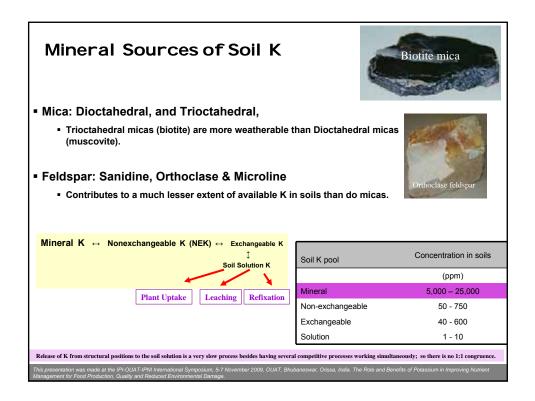


			Applied (kg ha-1)				Total viel	d To	Total uptake (kg ha-1)		
Crop sequence			Ν	Р		К	(t ha ⁻¹)	N	Р	K	
Maize-Wheat-G	reen gram		260	70		50	8.21	306	27	232	
Rice-Wheat-Gre	en gram	260		70		50	11.15	328	30	305	
Maize-wheat		250		54		75	7.60	247	37	243	
Rice-Wheat		250		44		84	8.80	235	40	280	
Maize-Wheat		240		52		00	7.72	220	38	206	
Pigeon pea-Whe	at		144	52		00	4.82	219	31	168	
P. Millet-Wheat-	-Green gram		245	66		66	10.02	278	42	284	
P. Millet-Wheat-	-Cowpea		245	66		66	9.22	500	59	483	
(Fodder)							19.9 (F)				
Soybean-Wheat			145	61		0	7.74	260	37	170	
Maize-Wheat-G	reen gram	m 295		74		0	9.01	296	47	256	
Maize-Indian-Rape-Wheat 33		330	69		0	8.63	250	41	200		
Of the curren	t net negativ			ce or ann		oletic		lt, 19% is		P and 69% K	
	Nutrient	Additi		Removal	Balan	e	Addition	Removal	Balance		
	N		,923	9,613		310	5,461	7,690	-2,229		
	P ₂ O ₅	4	,188	3,702		486	1,466	2,961	-1,493		
	K ₂ O	1	,454	11,657	-10	202	1,018	6,994	-5,976		
rce: Tandon (2004)	Total	16	,565	24,971	-8	406	7,945	17,645	-9,701		

Inadequate appl ication of potassium is evident in the vast Indo-Gangetic Pl ains of India


	Area			Nutrient u	use (kg/ha)			
Sub region of IGP	(X 10 ³ ha)	1	N	1	Р	1	K	
		Rice	Wheat	Rice	Wheat	Rice	Wheat	
Trans-Gangetic Plains	3809	166.1	154.2	51.3	49.6	0.8	12.3	
Upper-Gangetic Plains	3160	115.0	109.8	40.7	37.6	5.2	11.4	
Mid-Gangetic Plains	3133	116.1	100.0	29.1	32.7	4.3	20.5	
Lower-Gangetic Plains	119	82.6	87.1	16.3	21.4	36.4	44.0	

This has caused a gradual decrease of potassium from the soils in the Indo-Gangetic plains

Soil Series and Location	NH4OAc-H	K (mg/kg)	HNO3-K (mg/kg)		
Son Series and Location	First sampling	After 10 years	First sampling	After 10 years	
Nabha, Punjab	104±54	63±41	965±255	875±230	
Akbarpur, UP	125±41	71±23	1448±203	1231±188	
Rarha, UP	95±33	79±20	1531±353	1497±180	
Hanrgram, WB	132±53	93±16	425±160	400±191	
Kharbona, WB	42±17	29±16	119±34	109±26	

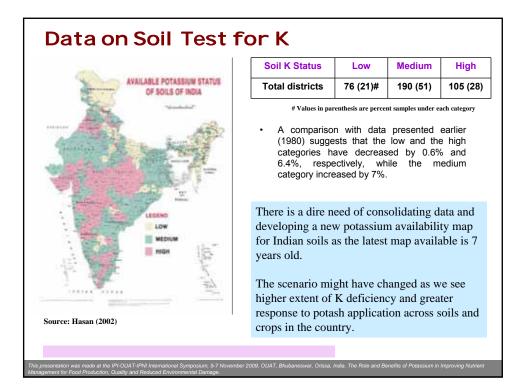
is presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November

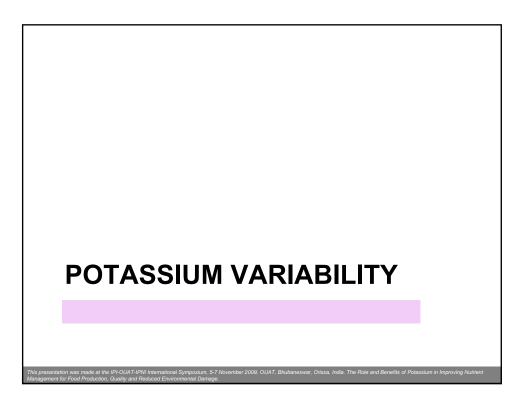
Benchmark Soil / Soil Series Iolambi (AS-SA) ** (Udic Ustochrept)	Parent material	50-2 mm	<2 mm	
lolambi (AS-SA) ** (Udic Ustochrept)			<2 mm	
	IGP*	2.14	2.63	
lissar (AS-SA) (Typic Ustochrept)	IGP	2.05	2.57	
otpara (AS-SH) (Aeric Fluvaquent)	IGP	2.27	2.73	
Canagarh (AS-SH) (Udic Ustochrept)	IGP	1.48	1.60	
Pahotia (AS-PH) (Typic Haplaquept)	BA	1.47	1.10	
kahugaon (AS-PH) (Typic Haplaquept)	BA	1.70	1.04	
roli (BS-SH) (Typic Chromustert)	DBA	1.80	1.05	
imone (BS-SA) (Typic Chromustert)	DBA	1.90	1.00	
Casireddipalli (BS-SA) (Typic Pellustert)	DBA	1.56	1.04	
Cheri (BS-SH) (Typic Chromustert)	DBA	1.87	1.01	
arol (BS-SH) (Typic Chromustert)	DBA	1.50	1.04	
atancheru (FS-SA) (Udic Rhodustalf)	GG	1.77	1.80	
algonda (FS-SA) (Udic Rhodustalf)	GG	2.00	1.87	
yavapatna (FS-SA (Udic Rhodustalf)	GG	2,25	2.16	

Nature of Soil Micas X-ray diffraction intensity ratio of 001 and 002 basal reflection (10Å) of mica > 1.0 suggests the presence of both muscovitic and biotitic minerals. This ratio ≈ 1.0 suggests the presence of only muscovitic minerals. Based on these criteria, silt fractions of alluvial soils of IGP and Brahmaputra alluvium (BA), ferruginous and black soils, as well as the clay fraction of soils of IGP and ferruginous soils contain both muscovite and biotite (001/002 basal reflection ration > 1.0). However, the clay fraction of soils of BA and black soils are more muscovitic in character (001/002 basal reflection ratio ≈1.0). This is evidenced by the reduced rate of K release from black soils and soils of BA compared to much higher rate of K release from soils of IGP and ferruginous soils under K stress (e.g., repeated batch type of Ba-K exchange).

Rate of release of K from the K bearing minerals in soil is a much slower process than the rate of K uptake by plants, especially at the vital plant growth stages. The former may fall short of adequate supply at the right time to meet the crop need.

Distribution of Different Clays and Forms of K in Two Soils of West Bengal


The native K status depends, not only on the parent material of soil, but also on the subsequent stages of weathering of the parent material


Soil propertie	es	Kalyani (an Entisol)	Anandapur (an Alfisol)	
Illite (Hydrous mica)	(%)	38.0	38.8	
Smectite	(%)	28.0	-	
Kaolinite	(%)	11.0	61.2	
Chlorite	(%)	6.00	-	
Vermiculite	(%)	17.0	-	
Nonexchangeable K (NEK)	cmol (p ⁺)kg ⁻¹	6.02	0.57	
Total K	cmol (p+)kg-1	52.2	29.0	

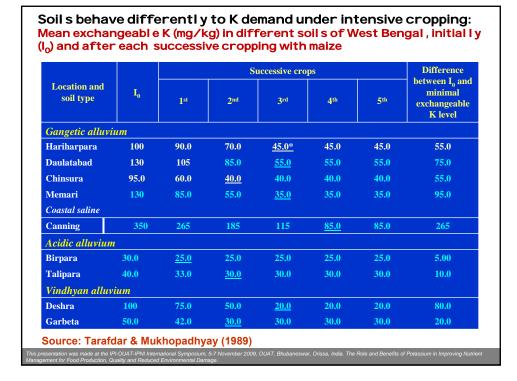
Source: Ghosh & Sanyal (2006)

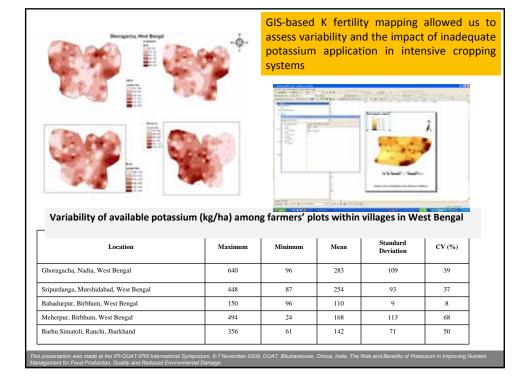
Thus the basic consideration of not recommending adequate rates of K for crops, while tapping such supply from the native mineral sources, may *not* hold good in the current intensive agricultural scenario.

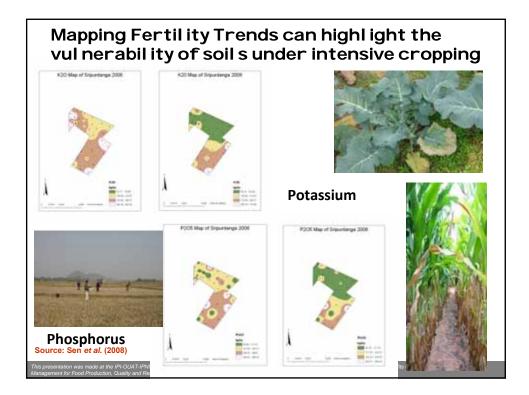

his presentation was made at the IPI-OUAT-IPNI International Symposiur

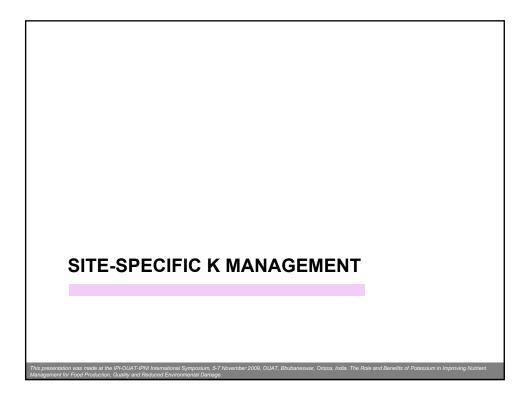
Plant nutrient content of agricultural soils vary spatially due to variation in:

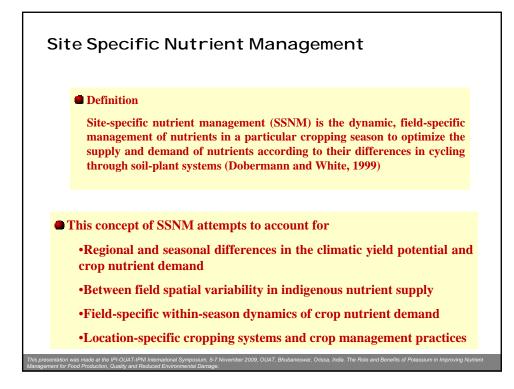
- ✓ Genesis
- ✓ Topography
- ✓ Cropping History
- ✓ Fertilization History
- ✓ Resource availability etc.

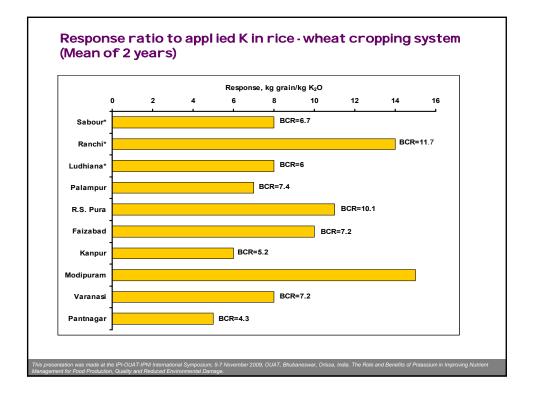

Our interest in K variability comes from the understanding that there could be an advantage in managing K in a spatially variable way rather than in a generalized way.

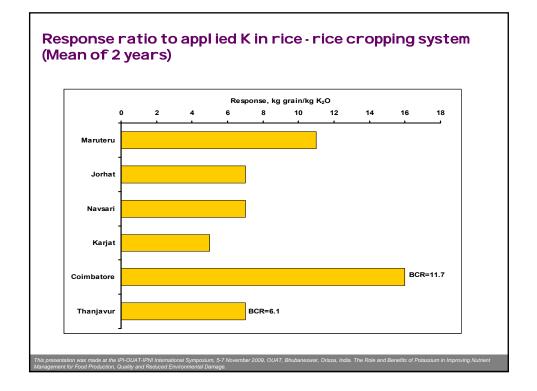

In small holding systems, each farm family operates small pieces of land with different management styles so variability is high over short distances

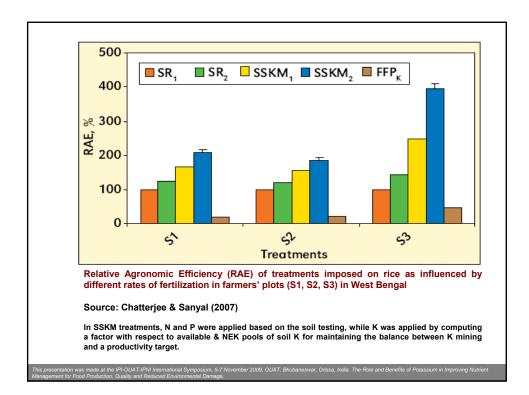

Soil	Location	Сгор	Variety	K requirement (kg q ⁻¹)
Acid Alfisol	Kangra (H.P.)	Rice	Norin-18	2.96
lack soil	Jabalpur (M.P.)	Rice	IRB, Patel-85, Ratna	3.80
Black soil	Guntur, Andhra Pradesh	Rice	Mashuri	2.58
lew alluvial soil	Kalyani, West Bengal	Rice	IET-4094	1.95
Calcareous soil	Bihar	Rice		2.21
cid Alfisol	Kangra (H.P.)	Wheat	S-308	1.66
lluvial	IARI, New Delhi	Wheat		2.83
ypic Chromuserts	Rahuri, Maharashtra	Wheat	HD-2189	2.25
lack soil	Jabalpur	Wheat		3.79
alcareous soil	Bihar	Wheat	RR-21	1.63
cid Alfisol	Kangra (H.P.)	Maize	Early composite	1.64
halka soil	Jagitial, Andhra Pradesh	Maize	DHM-105	1.55

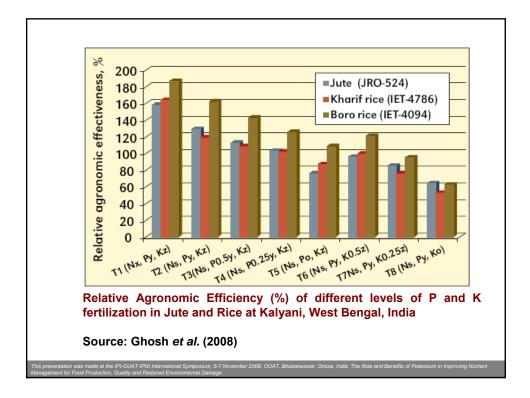

Source: Subba Rao & Srivastava (2001)


- Potassium requirement for rice varied over about 20 kg/t.
- This variation is unlikely to be due to only varietal difference.
- Potassium supplying capacity of soils (mineralogy) seems to play a role.
- · The present trend of applying K at a certain pre-determined rate/ratio needs to be examined rationally.


Location	Optimu	ım rates (kş	g K ₂ O/ha)	Location	Optimum rates (kg K ₂ O/ha)		
	Rice	Wheat	System		Rice	Rice	System
Sabour	75	76	153	Maruteru	93	94	188
Palampur	76	103	182	Jorhat	89	92	176
R. S. Pura	94	104	196	Navsari	72	106	186
Ranchi	82	91	179	Karjat	94	95	165
Ludhiana	102	84	188	Coimbatore	34	45	72
Faizabad	80	60	143	Thanjavur	86	82	178
Kanpur	89	66	153				
Modipuram	87	88	177				
Varanasi	85	104	171				
Pantnagar	76	77	148				


Cropping	-	onse (kg rico alent/ kg nu	0	Economic response (Rs./Rs. invested on nutrient)			
system	Ν	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
Rice-rice	12.0	14.6	16.2	9.9	5.1	10.6	
Rice-wheat	10.1	15.9	14.0	8.4	5.7	9.4	
Rice-groundnut	14.3	22.8	24.6	11.8	8.1	17.6	
Rice-chickpea	14.0	11.7	11.7	11.4	4.1	8.3	
Rice-mustard	10.8	19.5	17.3	8.4	6.4	5.0	
Rice-tomato	19.5	20.2	51.0	10.3	5.1	24.9	


On-farm response to nutrient in rice based cropping systems


CHANGES IN ECONOMIC RETURNS WHILE SHIFTING FROM FARMER NUTRIENT MANAGEMENT TO SSNM IN RICE-WHEAT CROPPING SYSTEM

Location	Extra cost of fertilizer (Rs/ha)	Value of extra produce (Rs/ha)	Net return (Rs/ha)	AEK Rice	AEK Wheat
Sabour	4700	53850	49150	12.2	7.5
Palampur	4730	26230	21500	12.4	13.3
Ranchi	5080	41760	36680	16.8	5.7
R. S. Pura	5120	32460	27340	10.9	8.9
Ludhiana	3970	16690	12720	7.3	2.5
Faizabad	6380	50000	43620	8.8	9.0
Kanpur	5700	35760	30060	10.8	5.5
Modipuram	1480	48190	46710	27.1	11.7
Varanasi	4310	19270	14960	10.3	8.7
Mean over location	5070	36010	30940	12.9	8.1
Source: Singl	n <i>et al.</i> (2008)				
	I-OUAT-IPNI International Sy Jality and Reduced Environm	mposium, 5-7 November 2009, ental Damage.	OUAT, Bhubaneswar, Orissa,	India. The Role and Benefits	of Potassium in Improving N

CONCLUSIONS

- While it will be necessary to rationalize the use of N fertilizers, ominous signs are that if strategies and policies are not developed to boost K supply, and this essential nutrient remains neglected as in the past, future sustainability in agriculture is likely to be constrained mostly by this nutrient.
- Regions supporting high intensive cropping sequences are anticipated to be the earliest victim of such imbalance.
- Continuous cropping with only N and P and no / inadequate K application would cause depletion of NEK reserve which will go largely unnoticed by the conventional soil test for K.
- Considering that K fertilizers are imported, and the possible NEK depletion under our present farming practices, judicious site specific K management strategy has indeed the potential to address the concerns pointed out.
- In future, we will have to recognize spatial variability of nutrients among farmers fields and tailor recommendations accordingly to improve productivity.

