

As consequence of lack of adequate recycling comes a <u>worsening in soil</u> <u>structure and a decline in soil</u> <u>fertility</u> as already discussed by J.v.Liebig (1876).

Additionally, the <u>annual</u> <u>flooding in India is</u> <u>partially a consequence of</u> <u>this damage of soil structure!</u> Increasing events of drought and other abiotic stresses as consequence of global warming, also require a <u>specially high supply of K</u> besides various micronutrients <u>for stress mitigation!</u>

Under drought conditions in the field, farmers in Germany often <u>act</u> <u>irrationally by decreasing</u> <u>K supply.</u>

5

		of K within a t	· · · ·	
	live than the	yard gate bal	,	ld balance is c
Stuttgart-R	uit, Germany 1d on field le	rganic-manag v estimated or vel (field bald gate balance	n farm level Ince) for 19	(yard gate
	A. I alu	gate balance	$\underline{\mathbf{D}}$. I K	
	kg a ⁻¹	kg ha ⁻¹ a ⁻¹	kg a ⁻¹	kg ha ⁻¹ a ⁻¹
Input	kg a ⁻¹ 233	kg ha ⁻¹ a ⁻¹ 7	kg a ⁻¹ 3910	
Input Output	<u> </u>	0	0	kg ha ⁻¹ a ⁻¹
	233	7	3910	kg ha ⁻¹ a ⁻¹ 117

Leaching of nitrogen is given much more consideration than that of K. However, <u>K leaching can not be ignored in relation</u> to the K balance.

Average K leaching as affected by the rate of K fertilization for a sandy top soil of North Germany during the winter seasons 1989/1990 until 1994/1995

K fertilization rate (kg K ha ⁻¹ a ⁻¹)	K leaching (kg K ha ⁻¹ a ⁻¹)
0	22
60	42
120	79
180	133
(according to Wulff et al.,1998)	
→ Considerable amounts of K can be leached Germany with a humid climate. In Orissa comparable!	5
presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUA agement for Food Production, Quality and Reduced Environmental Damage.	·

This particular <u>higher K requirement under stress</u> <u>conditions</u> (drought stress, heat stress, disease pressure, low temperature, submergence) <u>is not in accordance with</u> <u>general K fertilization management</u> e.g. in Canada, China, <u>India</u> and most developing countries.

	I	Phosphate			Potassiu	m
Prov	Removal	Fert Use	Fert/Removal %	Removal	Fert Use	Fert/Remova
MB	258.4	263.7	102	331	92.2	28
SK	672.7	493.9	73	640.1	58.5	9
AB	451.1	393.1	87	607	127.9	21
						15

Crop removal vs. fertilizer use for K, Canada, 1996

		K. Kapoor, India)
		K (mg/kg)
 Fallow-Wheat, FYM	736	6450
Sorghum-Mustard , FYM	787	7852
Bottlegourd-Cauliflower, FYM	793	7406
Rice-Chickpea, No additions	653	5375
Fallow-Chickpea, No additions	693	5556
Fallow-Mustard, No additions	612	6882
Rice-Onion, FYM +N	774	4775
Maize-Cauliflower, FYM +N	731	4509
Rice-Celosia, FYM +N	844	4807
Rice-Wheat, N + P	587	3520
LSD (P=0.05)	18	110

As already mentioned above, dissemination of scientifical knowledge to farmers is urgently needed (see: tomato production in China and kiwi production in Italy). But there are still **future needs in <u>basic and</u>** <u>particularly applied research on K.</u>

20

Needs for future research soil aspects:

In addition to the well known <u>chemical availability of K</u> (soil analysis) more consideration must be given to <u>spatial availability!</u>

<u>Spatial availability</u> for crop plants is <u>dependent on growth and activity</u> <u>of roots</u>, which is not measured by soil chemical analysis in the lab! <u>A spade/showel is needed!!</u>

(See: drought- or high N-induced K deficiency)

Recognition necessary by farmers and extension workers!

21

22

Significance of rooting density for <u>spatial nutrient</u> <u>availability</u> for maize on a sandy loam

root length density	share of soil volume which delivers P and K to roots (%)		
(cm/cm³ soil)	Р	К	
>> 2 (good rooting	20	50	
< 2 (poor rooting)	5	12	

(from Fusseder and Kraus, 1986, Flora 176, 11-16)

Thus, root growth is an important aspect for K acquisition particularly under stress conditions with inhibited root growth such as drought, low pH (Orissa), salinity or extreme soil temperature.

The <u>role of K in frost resistance</u> has been well known for many years; <u>but this aspect is much more complex</u> and involves micronutrients as shown in the following slide:

in addition, it was observed, that <u>B foliar application</u> also improved frost resistance of winter rape, <u>but only when combined with potassium application</u>! (B.Bauer, 2009, pers.communi.)

Thus, there is a <u>need for more basic critical research</u>, including nutrients stabilizing plasma membranes <u>and not just only plus / minus K!</u>

27

Needs for future research plant aspects:

- Role of K in frost resistance
- Role of K in disease and pest resistance
- Role of K in drought and heat resistance / Deep placement of K
- Role of K in a better fruit quality / Late foliar application of K for a better retranslocation of sugars
- Role of K in salt resistance
- Initiation of cluster root formation by placement of stabilized ammonium in other plant species than Proteaceae or *Lupinus albus* e.g. for a better use efficiency of K besides of P

