Release of soil K in NaBPh₄ solution and a modified method for measuring soil available K

Huoyan Wang, Haixia Sun, Jianmin Zhou et al.

The State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chenese Academy of Sciences, Nanjing, 210008, CHina

*Sponsored by NFSC (40201027)

Content

- Principle of NaBPh₄ (NBP) method and its history
- Release of soil K in NaBPh₄ solution under different condition
- Relationship between K uptake by plant and soil available K extracted by a modified NaBPh₄ method
- Conclusion

Principle of NaBPh₄ method

K++ NaBPh₄ → KBPh₄ ↓ +Na⁺ (s=1.8×10⁵ mol L¹)
Very low solubility, facilitated the release of fixed K;
Slight destruction to the original mineral;
The easily released K will firstly be extracted;
Under different conditions, the different fractions of soil K could be released

History of NaBPh4 method

- Was firstly proposed in 1954 (Hanway, 1956);
- Scott and Reed (1962): Addition of EDTA to stabilize of NaBPh₄, Using 0.5M NH₄Cl and heating to dissolve KBPh₄,
 Reed and Scott (1961): Using HgCl₂ to accelerate decomposing of KBPh₄
 Cox et al. (1996): Using CuCl₂ instead of HgCl₂

Application of NaBPh₄ method

 Was mostly used for extraction of non-exchangeable K especially in various kinds of clay minerals such as vermiculite, illite, biotite, phlogopite, muscovite and so on in the early research;

It was used for soil testing in the recent years. Cox et al. (1999) found that amount of K extracted with 1.7MNaCl-0.01MEDTA-0.2M NaBPh₄ for 1 min had a very good correlation to the K uptake of plant;

Application of NaBPh₄ method

 Based on the recovery of external added K and the amount of K exhausted in the soils of long-term field experiment, we established a method to quantifying the change of soil K:

0.500 g soil + 3 ml NaBPh₄ solution (1.7 M NaCl + 0.25 M NaBPh₄ + 0.01 M EDTA), shake for 24 h at 25° C.

As the soil K changed after exhaustion or fertilization, the amount of changed K could be quantified by measuring the change of $NaBPh_4$ -extracted K between original and K-changed soil.

Application of NaBPh₄ method

 The total non-exchangeable K (NEK) released by NaBPh₄ is limited in the soils, it would not increase as the extraction period further increased. A method for quantifying the total NEK in the soil was also established:

0.500 g soil + 3 ml NaBPh₄ solution (1.7 M NaCl + 0.25 M NaBPh₄ + 0.01 M EDTA), shake for over 10 d at 45° C or for over 20 d at 25° C.

Purpose of current research

Most of NaBPh₄ method extracted too much of soil K. Current research aimed to investigate the release of soil K in NaBPh₄ solution with low extracting power and to find a proper method for evaluation of soil available K.

Material and method

Basic information for the four soils tested

Site	Soil type	Parent meterial	рН (1:1 Н₂О)	Main clay minerals	Crops
Laiyang, Shandong	Fluvo- aquic soil	Fluvial deposits	6.80	HM, VC, KK, SM	wheat-maize
Wangcheng, Hunan	Paddy soil	Quaternary Red clay	5.14	HM, SM	Double rice
Fengqiu, Henan	Fluvo- aquic soil	Fluvial deposits	8.65	HM, CH, VC, KK, SM	wheat-maize
Changshu, Jiangsu	Paddy soil	Lacustrine deposits	6.65	HM, SM, CH, VC, KK	Rice-wheat

HM, hydromica; VC, vermiculite; KK, kaolinite; SM, smectite; CH, chlorite

NaBPh4 method

Extraction: 0.5 g soil, addition of 3 ml 0.01M EDTA + NaBPh₄ solution (without NaCl) >> Block extraction: addition of 25 ml guenching solution $(NH_4Cl + CuCl_2)$ Recovery of K from KBPh₄: boiling for 50-55 min Determination of K: filtered or centrifuged for determination on a flame photometer

Release of soil K in NaBPh₄ solution

Linear correlation between time and soil K released in 0.2M NaBPh₄ solution

Soil	NH₄OAc-K mg kg ⁻¹	Hot HNO3-K mg kg ⁻¹	Slope mg kg ⁻¹ min ⁻¹	Intercept mg kg ⁻¹	R ²	K released in 30 min (mg kg ⁻¹)
Laiyang	89.7	1068	2.794	193.3	0.946**	272
Wangcheng	73.1	334	0.171	108.5	0.813**	114
Fengqiu	126.0	1092	0.411	196.5	0.859**	208
Changshu	149.5	582	1.351	252.9	0.976**	293

Ratio of rate of K released from 4 soils: 16.4 : 1 : 2.4 : 7.9

Release of soil K in NaBPh₄ solution

The effect of concentration of NaBPh₄ on amount of K released from 4 soils

Linear correlation between concentration of NaBPh₄ and soil K released in 30 min

Soil	NH₄OAc-K mg kg ⁻¹	Hot HNO3-K mg kg ⁻¹	Slope mg kg ⁻¹ min ⁻¹	Intercept mg kg ⁻¹	R ²	K released in 30 min (mg kg ⁻¹)	
Laiyang	89.7	1068	759.3	116.7	0.995**	272	
Wangcheng	73.1	334	106.8	95.2	0.667*	114	
Fengqiu	126.0	1092	336.9	149.3	0.924**	208	
Changshu	149.5	582	539.6	191.7	0.889**	293	
Ratio of efficiency of increased NaBPh ₄ on the release K from 4 soils:							

7.1:1:3.1:5.0

Comparison of characteristics of K release from 4 soils

Traditional NH₄OAc extracted K: Changshu > Fengqiu > Laiyang > Wangcheng

Traditional hot HNO3 extracted K: Fengqiu = Laiyang > Changshu > Wangcheng K easily extracted by NaBPh4: Changshu = Laiyang > Fengqiu > Wangcheng Release rate of K easily extracted by NaBPh4: Laiyang > Changshu > Fengqiu > Wangcheng

Amount vs release rate of soil available K Which one is more important for plant K uptake?

As compared with the traditional method, is there a more suitable method for measuring soil K availability?

K release from soils lead by sequential growing of ryegrass

Effect of dose of K applied on the accumulative K removed by 4 seasons of ryegrass from 4 soils

K release from soils lead by sequential growing of ryegrass

Accumulative K removed by 4 seasons of ryegrass from 4 soils without external K

For the soils with high level of available K (AK), the K removed by plant will not so much depend on the release rate of soil AK. For the soil with low level of AK or the soils under sequential growing of plants, the K removed by plant will largely depend on the release rate of soil AK.

The NaBPh₄ method (0.2M 30min) could extract all the traditional AK together with some easily released soil K which influenced by the release rate of soil AK. Is it a good method for measuring soil AK?

The relationship between K extracted by NaBP₄ and K removed by plant

The linear correlation between K uptake, K content of ryegrass (1st season) and soil available K extracted with NH₄OAc or the NaBPh₄ method

The relationship between K extracted by NaBP₄ and K removed by plant

The linear correlation between accumulative K uptake by ryegrass (2 or 3 seasons) and soil available K extracted with NH₄OAc or the NaBPh₄ method

Conclusion

The amount of soil K released by NaBPh₄ with lowest extracting power close to the K extracted by NH₄OAc, more K could be released by NaBPh₄ as the extracting power increased. Different soils showed different K release characteristics as NaBPh₄ extracting power increased;

With high level of AK in soil or the short growing period of plant, the K removed by plant will not so much depend on the release rate of soil AK. With low level of AK in soil or the long growing period of plant, the K removed by plant will largely depend on the release rate of soil AK. The soil K release pattern showed some what similar when the K was removed by plant or the NaBPh₄ solution;

The results suggested that the modified NaBPh₄ method could be used for measuring of soil AK. The method is suitable to soils with different properties, which is much better than the traditional NH₄OAc method.

Thanks for your attention!