

PROCESSES FOR ACID SOIL FORMATION

Acid soils are formed due to

- 1. drastic weathering influenced by hot humid climate and heavy precipitation.
 - ✤ laterization,
 - ✤ podzolization,
 - intense leaching of bases and
 - Accumulation of undecomposed organic matter under marshy condition

Extent of Acid soils in the country :

- ✤ 30 % of the cultivated area acidic
- 12 % strongly acidic (pH < 5.0)
- ♦ 48 % moderately acidic (pH 5.1-5.5)
- ✤ 40 % mildly acidic (pH 5.6 6.5)

	Extent of occurr	ence of acid soils	
State	% of ASR	State	% ASR
Assam and N.E	80	Karnataka	50
West Bengal	40	Kerala	90
Bihar	33	Maharastra	10
Orissa	80	UP	10
MP	20	HP	90
AP	20	J & K	70
TN	20		
In acid so	il regions (AS	R) precipitation	exceeds the
evapotranspi	ration and her	nce leaching is	predominant
causing loss	of bases from	the soil. When the	ne process of
weathering i	s drastic, the su	ubsoil, and in ma	ny cases, the
whole profile	e becomes acidic.		
resentation was made at the IPI-OUAT-IPNI Inte gement for Food Production, Quality and Reduc	ernational Symposium, 5-7 November 2009, C ed Environmental Damage.		

Distribution of acid soils in India

- Greater and Higher Himalayas mountain + valleys
- ♦ Middle and lower Himalayas and sub-Himalayas
- Peninsular region Subtropical and tropical monsoon (Laterite, lateritic, red and yellow soils.)
- Eastern plains : Assam valley, Eastern Bihar and Lower Gangetic plain of West bengal.
- Coastal Plains : Kerala, West Coast, Deltaic area of Sunderbans.

osium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient

SI No.	Soil Group	Approximate area (million ha)	Equivalent names in Soil Taxonomy
1	Red loam and red sandy soil	7.4	Haplustalfs, Rhodustalfs, Ustorthents
2	Laterite and lateritic soil	0.70	Plinthustalfs, Haplustalfs, Ochraqualfs
3	Riack soil	0.96	Chromusterts, Pellusterts, Ustochrepts
4	Dettaic alluvial soil	0.67	Haplustalfs, Fluvaquents, Halaquepts
5	Coastal saline and alluvial soil	0.26	Haplustalfs, Fluvaquents
6	Red and vellow soil	5.50	Haplustalfs, Paleustalfs, Ustochrepts
7	Mixed red and black soil	0.16	Association of Alfisol
0	During farent coll	0.17	Haplustults, Ustochrepts

Crop production constraints in acid soils and their management

- I. Physical
- Compaction by heavy rollers
 (4 to 6 passes of 800 kg roller)
- ✤ Crust formation in red soils :

n was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubai

- Management by straw mulching in lines cotton, soybean, cowpea, fingermillet.
- * Incorporation of powdered groundnut shells, paddy husk 2 weeks before setting reduces hardening.

II. Chemical and Biological

- ✤ A low pH
- ✤ A low CEC
- ✤ Nutrient imbalance
- ✤ A low level of base saturation percentage
- ✤ A high Al, Fe, + Mn Saturation percentage
- ✤ A high P fixing capacity
- Inactivation of Rhizobia to some extent BGA.

Actid Sold Regions/ State	Crep	Farmer's practice	Farmer's practice + fime	TOOSCHPK	TOON HPK +
Accam	Rapeseed	7.3	8.6 (17.8)*	10.5 (43.8)	12.9 (76.7)
	Greengram	10.1	11.5 (13.9)	12.3 (21.6)	15.1 (49.0)
Himachial Pradesh	Mastare	23,5	27.4 (16.6)	34.0 (44.7)	37.5
	Wheat	17,4	20.2 (16.1)	27.9 (60.3)	31.7 (82.2)
Iberkhand	Matze	17:5	21.9 (25.9)	25.1 (46.9)	29.6 (73.3)
	Pea	28.6	32.51 (13.8)	42.6 (49.3)	51.2 (79,4)
	Pigeon peo	754	10.0 (34.4)	12.0 (61.3)	15.Z (105.3)
Kerala	Illack gram	3.5	4,4 (25.6)	4.0 (14.8)	.5.6 (58.2)
Maharashtra Meghalaya	Groundnut	14.2	16.7 (17.73	19,9 (40.1)	24.3 (71.2)
	Matze	10.6	13.8 (30.0)	21.1 (99.1)	30.6 (189.2)
	Mustard	1.0	(50.0)	1.9 (90.0)	4,9 (390.0)
Orma	Groundout	8.6	12.5 (45.3)	14.3 (66.3)	17.9 (108.1)
	Pigeonpea	30.5	15.1 (43.8)	16.4 (56.2)	20.2 (92.4)
West Bergal	Musterit	4.8	0.5 (35.4)	7.0 (45.8)	9.1 (89.6)
	Whent	10.2	15.5	15.0	19.0

Industrial wastes which have been identified as lime source should be utilized locally as far as possible. Economic distances of transport of such material may be worked out.

Approximately the dose of well decomposed organic matter for mildly acidic soil should be worked out through multilocational trials.

Steel mill slag and blast furnace slag being slow reacting and its production cost being high due to ball-mill grinding further research is required to prove its utility or otherwise.

ium, 5-7 November 2009, OUAT, Bhuban

Utility of Phosphogypsum a byproduct of phosphate industry though is not used for amending surface acid soils and being used for sub-soils to counter the aluminum toxicity further research is necessary. Since, AI toxicity is encountered in very low pH which is rare, it may be found out, if phophogypsum is useful excepting it being a source of Sulphur.

Though conclusive findings are absent towards the utility of fly-ash for amending acid soils since most of it are from the burning of acid coal, we need to conduct research if as all it has some utility.

Crops species tolerant to soil acidity need be identified beyond what has already been known.

