

WHAT IS QUALITY ?

-the degree of excellence or superiority, is a combination of attributes, properties, or characteristics that give each commodity value in terms of its intended use

edi) as berrefer af mutaasio¶ qore rof inemele villanp

production.

Involvement of potassium in physiological processes relevant to crop quality

- activates more than 60 enzyme systems
- aids in photosynthesis
- favours high energy status
- maintains cell turgour
- regulates opening of leaf stomata
- promotes water uptake
- regulates nutrients translocation in plant
- favours carbohydrate transport
- enhances N uptake and protein synthesis
- promotes starch synthesis

Multiple functions of K in many metabolic processes lead to numerous positive effect.

- **♦** Increase root growth
- Improve drought resistance
- * Reduces water loss and wilting
- Enhances winter hardiness
- Improves resistance to pests and diseases
- Builds cellulose and reduces stalk lodging
- ***** Increases nodulation of legumes.

Fruit crops are heavy feeders of potash and removal of K is higher than N.

Nutrient removal by fruit crops				
Crop	Yield (t/ha)	Uptake (kg/ha)		
		Ν	P_2O_5	K ₂ O
Banana	40	250	60	1000
Citrus	30	270	60	350
Grapes	20	170	60	220
Mango	15	100	25	110
Papaya	50	90	25	130
Pineapple	50	185	55	350
Passion fruit	15	60	15	75
Management for Food Production, Quality	and Reduced Environmental Damage.	November 2009, OUAT, Bhubaneswai	r, Unssa, India. The Role and Benefits	or Potassium in Improving Nutrient

E)	Soluble	e solids:
	Citrus	(Singh & Tripathi, 1978)
	Guava	(Mitra, 1987, Kundu <i>et.al</i> .;2007)
	Aonla	(Pathak <i>et al.</i> , 2002)
	Banana	(Mustafa, 1988, Kumar and Kumar, 2007)
	Pineapp	le (Martin-Prevel, 1961, Quaggio <i>et.al.</i> ;2009)
	Papaya	(Awada and Long, 1987)
F)	Storag	e life :
	Mango	(Shinde <i>et al.</i> , 2006)
	Citrus	(Alva <i>et al.</i> , 2006)
	Pineapp	le (Vis, 1989, Quaggio <i>et.al</i> .;2009)
	Grape	(Vis, 1989, Bhargava, 2006)
	Banana	(Turner <i>et al.</i> , 1999)
This pres	Grape Banana	(Vis, 1989, Bhargava, 2006) (Turner <i>et al.</i> , 1999)

Sulphate of potash foliar spray effects on yield, quality and post-harvest life of Neypoovan banana*

Treatment	Bunch wt. (kg)	TSS (%)	Acidity (%)	Sugar: acid ratio	Shelf-life (days)
Control (water spray)	10.80	24.4	0.40	50.9	6.5
0.5% SOP	11.53	27.9	0.30	71.0	7.8
1.0% SOP	12.63	28.9	0.23	84.3	7.8
1,5% SOP	14.27	28.9	0.23	976	8.7
CD (P=0.05)	1.02	2.06	0.024	6.72	0.98
* Kumar and Kumar (2007) Sprayed twice, initially after the opening of last hand (7 th month after planting) and 30 days later					

Effect of KCl spray on 'Sardar' guava				
	weight (g)	(%)	(%)	(mg 100g ⁻¹ pulp)
Control (water spray)	133.0	11.28	0.296	237.4
1.0% KCl	136.7	11.52	0.326	239.9
2.0% KCl	141.8	11.66	0.338	242.4
CD (P=0.05)	5.61	0.144	0.009	1.543
* Kundu <i>et al.</i> (2007) Two spray – May 10 th and September 10 th .				

Post-harvest behaviour of pineapple affected by sources of potassium*

Source of K	TSS ⁰ Brix	Acidity (%)	Firmness (Neuton)	
	AT HAR	VEST		
KCl	15.5	0.55	11.7	
K_2So_4	15.1	0.50	12.7	
$K_2So_4 + KCl$	15.4	0.53	13.9	
28 days of STORAGE				
KCl	14.7	0.67	8.5	
K_2So_4	15.4	0.54	9.6	
K ₂ So ₄ + KCl	15.5	0.59	8.0	
* Ouaggio et al. (2009) presentation was made at the IPP-OUAT. IPM International Symposium, 5-7 Nevember 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Polassium in Improving Nutrient exements for Several Ponce International Sector Reserved for Poncesco International Control (Sector Poncesco) (Secto				

- Total soluble solids of the smooth Cayenne pineapple fruit pulp varied significantly as a function K rates.
- Total titratable acidity increased in response to K application, especially with KCl.
- The use of K as sulphate resulted better fruit sugar acid ratio, especially at higher K rates.
- Post-harvest characteristics of fruits were more affected by K rates than by K sources.

Increased leaf-K content increased yield and improved fruit quality in litchi*

K-rates	Leaf K content (%)	Photosynth -esis µmol Co2/sq/m/s ec.	Water use efficiency mmol/mol	Yield kg/tree	TSS/ acid ratio
K-400 tree ⁻¹ year ⁻¹	0.95	8.78	20.43	77.3	38.7
K-600 tree ⁻¹ year ⁻¹	0.89	5.86	17.47	79.6	48.2
K-800 tree ⁻¹ year ⁻¹	1.00	12.19	26.45	78.9	62.1
SEm± 0.014 0.798 1.41 3.72 2.93 Pothak at al. (2007)					
Automate Cr. Unit. (2007) This presentation was made at the IP-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient Management for Food Production, Quality and Reduced Environmental Damage.					

Research results from BCKV:				
	K levels (g/plant/year)			
Mango (Fazli) 35 years	500 → 1000g	Fruit weight (g) : $595 \rightarrow 748$ Total sugar (%) : $12.0 \rightarrow 12.5$ (Mallick <i>et al.</i> , 1985)		
Banana (Gaint Governor)	$120 \rightarrow 240g$	Fruit weight (g) : $117 \rightarrow 139$ Total sugar (%) : $14.6 \rightarrow 16.7$ (Chattopadhyay and Bose, 1985)		
Pineapple (Kew) 64,000/ha	$200 \rightarrow 600 \text{kg}$	Fruit weight (kg) : $1.4 \rightarrow 1.9$ Total sugar (%) : $12.8 \rightarrow 15.2$ (Roy <i>et al.</i> , 1987)		
This presentation was made at the IPI-0	OUAT-IPNI International Symposium. 5-7 Novembe	r 2009. OUAT. Bhubaneswar, Orissa. India. The Role and Benefits of Potassium in Improving Nutrient		

Litchi (Bombai) 22 years	$\begin{array}{c} 200 \rightarrow \\ 600 g \end{array}$	Fruit weight (g) : $18.1 \rightarrow 20.6$ Total sugar (%) : $13.9 \rightarrow 15.8$ (Ghosh and Mitra, 1990)
Guava (Sardar) 4 years	$\begin{array}{c} 130 \rightarrow \\ 260 g \end{array}$	Fruit weight (g) : $152 \rightarrow 176$ Total sugar (%) : $7.93 \rightarrow 8.72$ (Mitra & Bose, 1985)
Papaya (Ranchi) 2500/ha	200 → 600kg	Fruit weight (kg) : $1.42 \rightarrow 1.64$ Total sugar (%) : $5.07 \rightarrow 6.80$ (Mallick <i>et al.</i> , 1985)
Mandarin orange 22 years	200 → 600g	Fruit weight (g) : $84 \rightarrow 107$ Total sugar (%) : $8.3 \rightarrow 9.8$ (Mitra & Ghosh, 1991)
This presentation was made at the IPI-OU. Management for Food Production, Quality	AT-IPNI International Symposium, and Reduced Environmental Dama	5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient

