

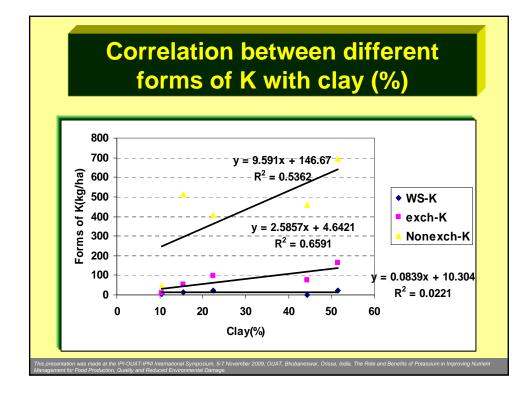

Rice occupies 50% of cultivated area

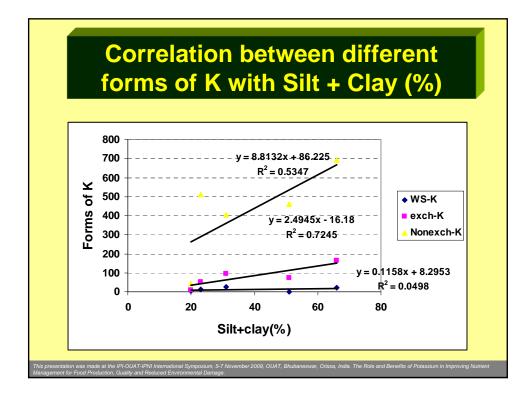
Pulse occupies 22% of cultivated area

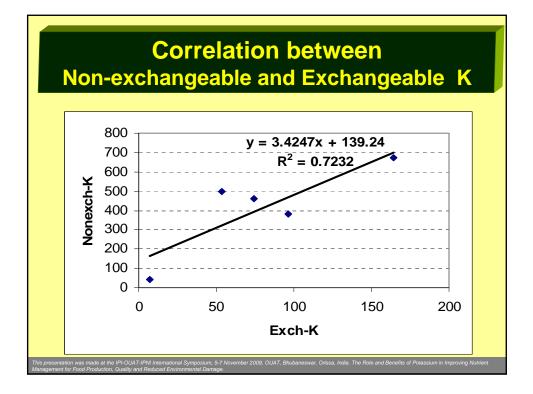
Oilseed occupies 9% of cultivated area

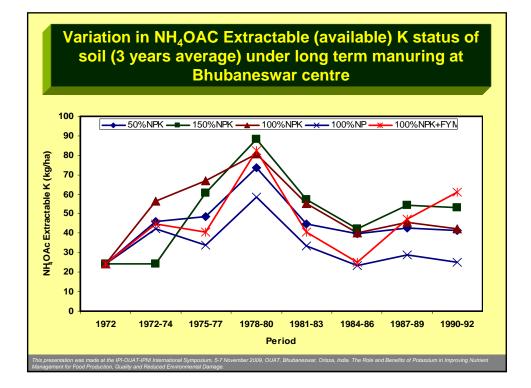
Vegetable occupies 7% of cultivated area

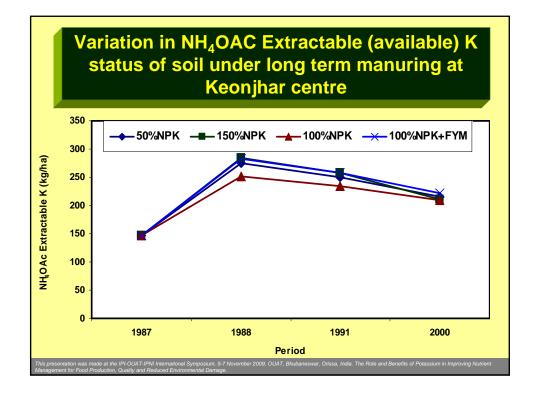
Spices, Jute, Sugarcane and other occupies 12% of cultivated area

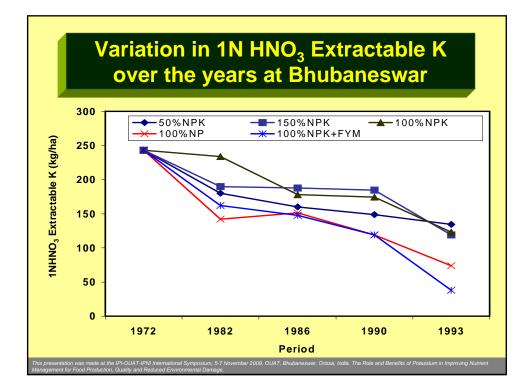

	y of different cr bared to all India	
		a (200 4 -05)
Crops	Productiv	vity (qha ⁻¹)
	Orissa	All India
Rice	14.55	19.84
Wheat	13.32	26.02
Maize	13.22	19.07
Arhar	6.83	6.67
Groundnut	15.15	10.20
Sugarcane	686.00	647.52
Potato	94.95	179.23

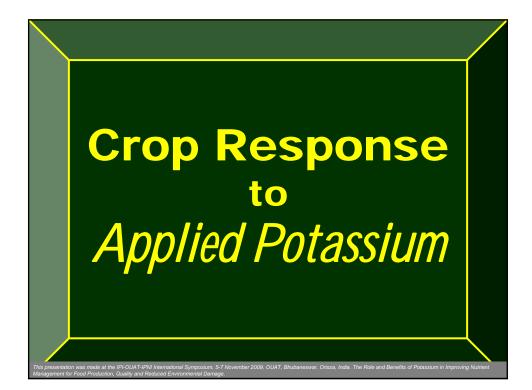

Fertilizer consumption rate and ratio of N and K in Orissa				
Year	N+P ₂ O ₅ + K ₂ O Kg ha ⁻¹	N: K ₂ O ratio		
1980	7.6	5.9		
1990	21.0	5.1		
2000	31.0	6.7		
2005-06	46.0	5.76		
2006-07	52.0	4.87		
2007-08	57.0	4.43		
2008-09	62.0	4.33		

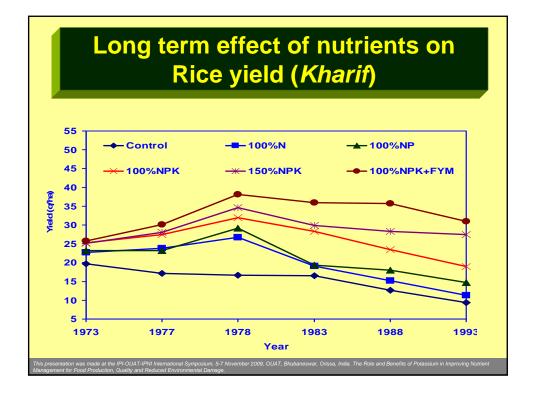

Soil	Faxonomic	Orders
Soil Order	TGA (million ha)	% of TGA
Inceptisols	7.49	48
Alfisols	5.62	36
Entisols	1.53	10
Vertisols	0.93	6

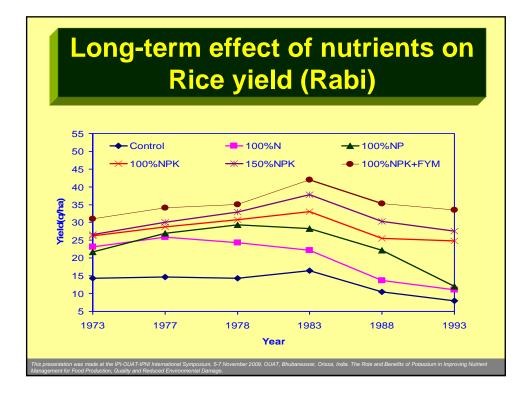

Mine	•	oosition o il Orders	of Different
Soil Order	Orthoclase (%)	Muscovite Mica (%)	Abundance Class Mineralogy
Inceptisols	9.8 - 41.1	0 - 6.1	Kaolinite > Illite
Alfisols	7.0 - 42.5	1.0 - 4.8	Kaolinite > Illite > Montmorillonite
Entisols	22.5 - 38.6	1.1-14.8	Illite > Montmorillonite > Kaolinite
Vertisols	12.4 - 26.9	2.7-11.0	Illite = Montmorillonite
This presentation was made at the IPI-OU. Management for Food Production, Quality		nmber 2009, OUAT, Bhubaneswar, Orissa	, India. The Role and Benefits of Potassium in Improving Nutrient


Soil type	WS-	Exch	Non-Exch	Lattice-	Total-
	K	K	K (kg ha ⁻¹)	K	K
<i>Inceptisol</i>	4.45	7.45	44.5	463.60	520.0
(Central farm)	(0.86)*	(1.43)	(8.56)	(89.15)	
A <i>lfisol</i>	1.15	74.3	461.75	3662.8	4200.0
(OUAT Orchard)	(0.03)	(1.77)	(10.99)	(87.21)	
V <i>ertisol</i>	21.7	164.0	692.3	2222.0	3100.0
(Balugaon)	(0.70)	(5.29)	(22.33)	(71.68)	
Entisol	12.0	53.45	510.55	624.0	1200.0
Pipili)	(1.0)	(4.45)	(42.55)	(52.0)	
<i>Saline Soil</i> (Chilka)	24.3 (1.52)	96.35 (6.02)	405.35 (25.33)	1074.0 (67.13)	1600.0






Treatments	1N NH ₄ OAC –K (kg ha ⁻¹)			1N HNO ₃ –K (kg ha ⁻¹)		
	0-0.15 m	0.15-0.30 m	0.30-0.45 m	0-0.15 m	0.15-0.30 m	0.30-0.4 m
100% NP	35	26	33	150	154	113
100% NPK	45	35	56	230	195	200
100% NPK + FYM	43	25	38	167	102	147
150% NPK	55	35	60	243	201	227
50% NPK	48	35	55	200	158	183


	Effect of treatments on K status of Mixed red and black
5	soils of Keonjhar from 1990 - 2000 in rice-oilseed/pulse
	sequence

	1N	NH ₄ OAC (kgha ⁻¹)	с –К		1N HNO ₃ – (kgha ⁻¹)	K
Treatments	0-0.15 m	0.15-0.30 m	0.30-0.45 m	0-0.15 m	0.15-0.30 m	0.30-0.45 m
100% NP	227	205	220	533	660	573
100% NPK	208	224	221	640	667	673
100% NPK + FYM	219	299	255	813	960	817
50% NPK	212	250	253	593	633	706
Initial	144	325	298	706	950	1098

			pping at B			
	Ste	p-K (mg	kg-1)	Cl	R-K (mg k	(g-1)
Treatments	0-0.15 m	0.15- 0.30 m	0.30- 0.45 m	0-0.15 m	0.15- 0.30 m	0.30- 0.45 m
100% NP	43	51	74	15	16	22
100% NPK	84	54	108	16	18	24
NPK (150%)	98	88	105	17	18	25
100% NPK + FYM	72	54	97	16	17	24
Initial	96	97	111	17	20	26

Crop response to K application (over NP) at Bhubaneswar in LTFE trial during 22 years of cropping

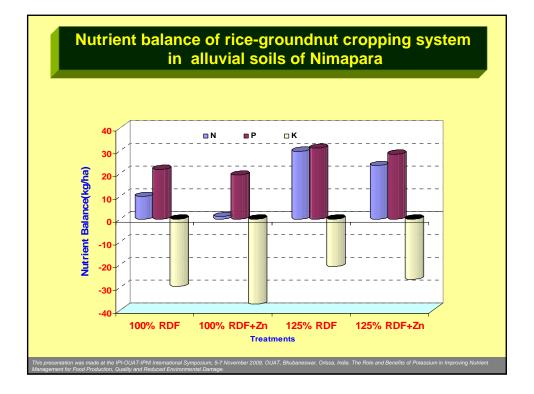
Year	Yield Respo	onse(qha ⁻¹)
	Kharif Rice	Rabi Rice
1978	5.14	1.65
1983	2.90	1.50
1988	8.95	4.80
1993	5.36	3.30

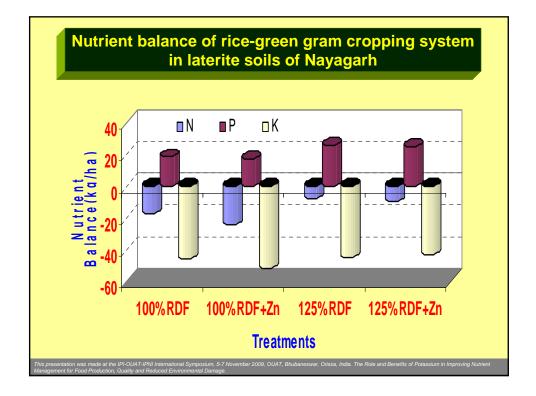
Effect of K rate on hybrid rice yield (two consecutive season) at Bhubaneswar

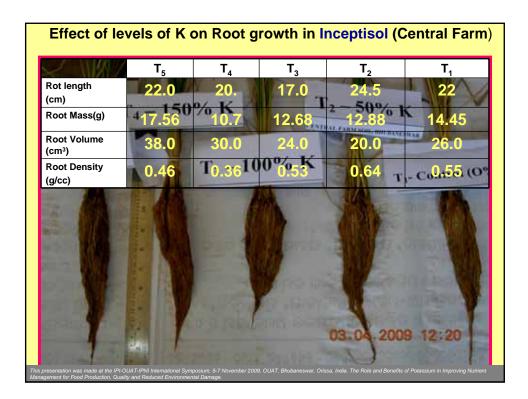
8.0			
	1.00	1: 1.44	0.39
9.3	0.90	1:1.29	0.42
10.7	0.80	1:1.15	0.45
11.2	0.70	1: 1.15	0.45
13.9	0.48	1: 1.01	0.49
0.5	0.08		
	10.7 11.2 13.9	10.7 0.80 11.2 0.70 13.9 0.48	10.7 0.80 1:1.15 11.2 0.70 1: 1.15 13.9 0.48 1: 1.01

Vegetables	Recommended	mmended Productivity (t ha ¹)		
	K (kg ha ⁻¹)	Orissa	India	Removal (kg ha ⁻¹)
Potato	90	12.85	17.6	310.0
Sweet Potato	75	8.37	-	340.0
C auliflower	60	14.17	18.4	350.0
Cabbage	60	27.61	23.4	480.0
Brinjal	125	14.50	15.9	300.0
Tomato	75	13.28	17.7	190.0
Okra	75	8.68	10.4	90.0
Pea	25	8.72	9.6	88.0
Others	_	9.81	13.2	-

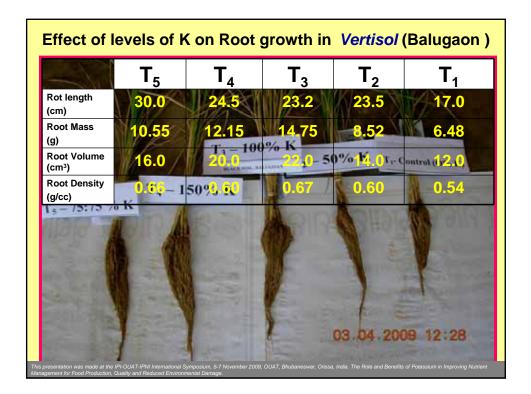
Area and productivity of some important Vegetables grown in Orissa during 2003-04

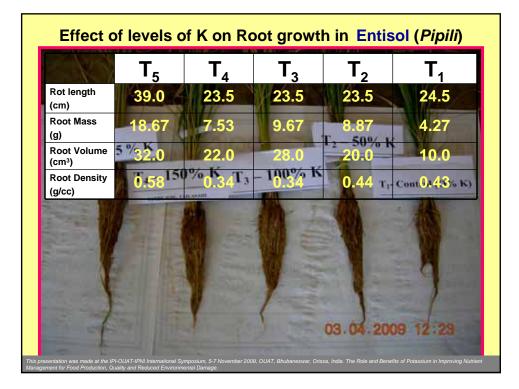

Effect of levels of K on yield and quality of banana in alluvial soil					
K (g/plant)	Yield (t/ha)	Fruit weight (g)	Total soluble Solid (%)	Total Sugar (%)	Ascorbic acid (mg/100 g pulp)
200	37.0	115.2	18.4	12.6	5.69
400	50.7	132.7	19.3	14.2	7.45
600	55.9	138.8	20.0	16.7	9.86
C.D. (0.05)	0.87	4.45	0.18	0.15	0.50

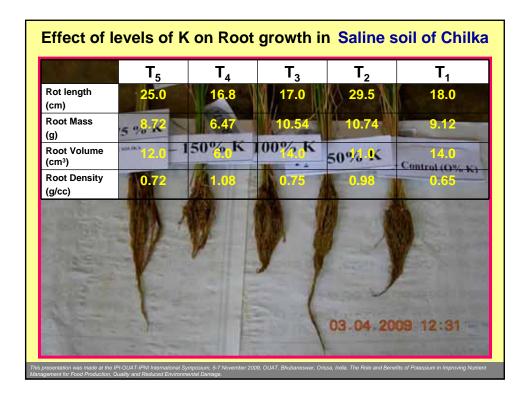

Soil Group	District	Upland Rice			
		No. of	Yield (qha ⁻¹)		
		Trial	N ₉₀ P ₆₀	Yield Response (kg grain/ kg K ₂ O	
Mixed Red &	Bolangir	17	26.15	4.4	
yellow	Sundergarh	10	23.18	4.8	
Red &	Bolangir	16	28.80	6.4	
Laterite	Sundergarh	6	32.84	-	
	Ganjam	10	23.30	4.8	
Mixed Red & Black	Ganjam	8	36.68	7.8	
Coastal saline	Ganjam	3	42.01	-	

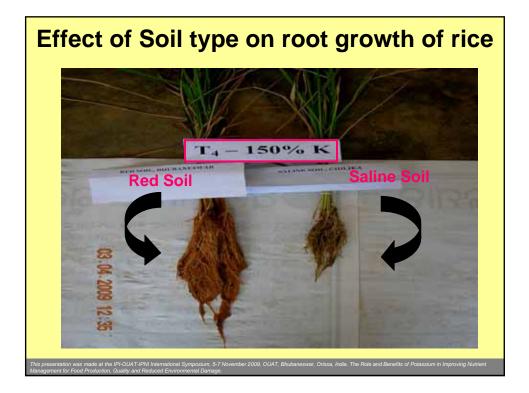

Response of paddy to Potassium under dry land (Rainfed) condition

Mean annual K uptake and balance in some selected treatments under rice – rice cropping system (41 cropping cycles)


Treatments	Yield (qha ⁻¹)		Mean Annual K	Mean Annual K
	Kharif	Rabi	Uptake	Balance
Control (N ₀ P ₀ K ₀)	15.6	13.1	(kg ha ⁻¹) 56.0	(kg ha ⁻¹) -56.0
100% N	20.9	20.5	84.0	-84.0
100% NP	22.5	27.98	90.0	-90.0
100% NPK	29.8	32.1	137.0	-37.0
100% NPK + FYM	34.8	37.59	167.0	-47.0
150% NPK	30.3	34.0	187.0	-7.0







	T_5	T ₄	T ₃	T ₂	T ₁
Rot length cm)	30.0	30.0	32.0	30.0	22.0
Root Mass g)	20.02	14.60	17.01	9.49	3.95
Root Volume (cm ³)	54.0	44.0	42.0	28.0	10.0
Root Density g/cc)	0.36	0.30	0.40	0.34	0.39
1			0		1

Conclusion

- Important K bearing minerals are muscovite, biotite and feldspar. The soils are medium to high in available K.
- The ratio of N: K2O fertilizer in Orissa is very wide (5.7 during 2005 – 06). Low application of K to crops leads to depletion of K by 242.87 thousand tones per year.
- There was no response to K application during first 10 years of cropping, but gradually the magnitude of response increased since available K become limiting and induce yield depression (LTFE).

- K estimation by Ammonium acetate method does not correlate with yield. 1N HNO₃ estimation of K is recommended.
- The dose of K for different crops in Orissa needs revision
- A sustainable fertilizer management strategy must ensure the farm productivity, optimum economic return without deteriorating agricultural environment. This could be achieved by adopting an holistic input – output mechanism.

