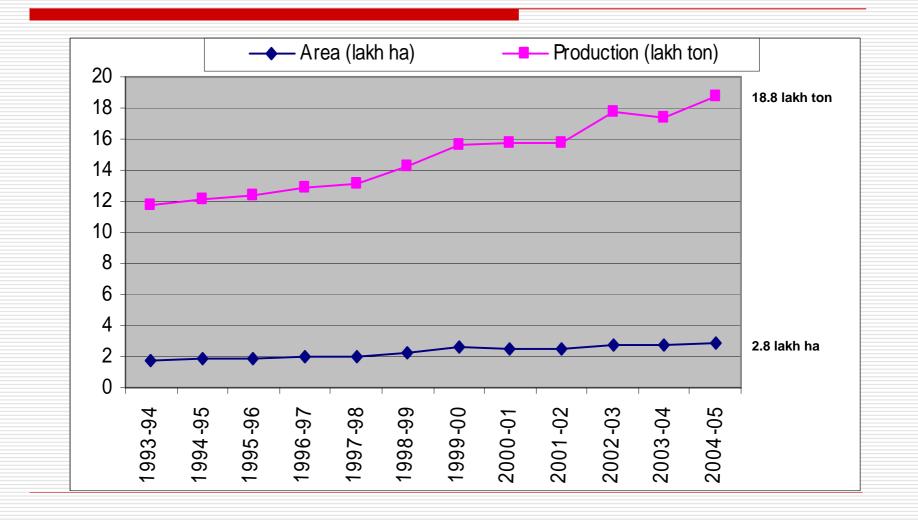


Welcome


Integrated nutrient management for sustainable yield of major vegetable crops in Bangladesh

Vegetable Production & Consumption in Bangladesh

Area	197508 ha
Production	1.371 million tons
Present consumption	120g/day/person (AVRDC, 2000)
Recommendation	220g/day/person
Requirement (as per recommendation)	11.24 million MT
Production to be increased (as per recommendation)	6 folds of the present production

Production Trend

Increasing cropping intensity to meet the demands for food for a swelling population has led to mining out the inherent plant nutrients from the crop fields, thereby fertility status of soils severely declined in Bangladesh over the years.

Because of cumulative negative nutrient balance the farming system has become unsustainable.

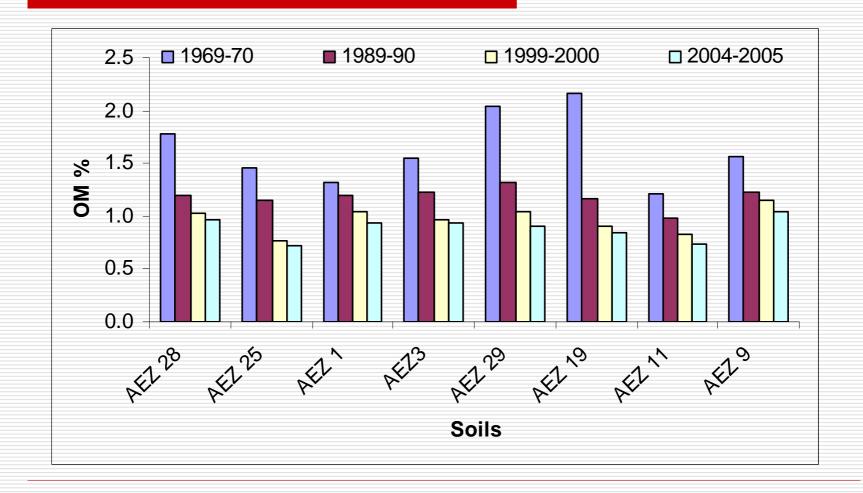
Puddling Causes Plough Pan Formation

Removal of silt/sand from crop land

Removal of crop residues

Application of organic matter

Problems of Chittagong Hill Tracts



Shifting cultivation
Deforestation
Soil erosion
Soil fertility degradation
Environment degradation

The total fertilizer used in the country, urea alone constitutes about 80% (BARC, 2005).

Organic matter content in Bangladesh soils is very low, the majority being below the critical level (1.5%), and it gradually depleted by 5 to 36% during the period of 1967-1995 (Ali *et al.*, 1997).

Depletion of soil organic matter in different Agro-Ecological Zones of Bangladesh

Since the nutrient turnover in soil plant system is considerably high in intensive vegetables cultivation, neither the chemical fertilizers nor the organic manure alone can help to achieve sustainable production.

Integrated nutrient management approach since 1990 in BARI

Integration of organic, inorganic & green manuring for sustainable agriculture

Considering the above perspectives, Soil Science Division of BARI conducted numerous experiments with vegetable crops:

Tomato Cabbage Cauliflower Broccoli Pea Sweet pepper and Potato

Objective:

The aim of the present paper is to provide some of the key findings of research as conducted by Soil Science Division of BARI during the recent years.

Materials and Methods

The present paper is entirely a review paper. It is written as adapting and citing some notable research findings of Soil Science Division, BARI, conducted during recent years (2000-2007).

Results and Discussion

Table 1. Yield of tomato as influenced by organic manure (OM) and chemical fertilizer (CF)

Treatment	Chemical fertilizer	PM	CD		Yield increase (%)		
		t h	a ⁻¹	2002-03	2003-04	2004-05	Increase (70)
T ₁	100% RD*	2.5	0	75.0a	70.8a	69.6a	282
T ₂	100% RD	0	2.5	66.1bc	64.5bc	61.7bc	241
T ₃	100% RD	0	0	64.8bc	63.1bc	60.7bc	234
T ₄	50% RD	0	0	48.1d	46.6de	48.7de	154
T ₅	50% RD	5	0	68.1ab	65.4ab	66.1ab	254
T ₆	50% RD	10	0	70.8ab	67.2ab	66.5ab	263
T ₇	50% RD	0	10	60.3c	61.0c	59.4c	220
T ₈	25% RD	10	0	52.1d	50.5d	52.6d	175
T ₉	25% RD	0	10	45.4de	42.5ef	48.0de	141
T ₁₀	0	10	0	40.7e	39.5f	38.8f	111
T ₁₁	0	10	10	28.8f	25.0g	24.0g	38
T ₁₂	Absolute	e control	control		19.1h	17.4h	-
CV (%)				7.3	5.90	6.10	-

*RD (Recommended dose of chemical fertilizer, kg ha⁻¹) = $N_{150}P_{45}K_{80}S_25Zn_2B_1$

CD = cow dung and PM = poultry manure

Table 2. Curd yield of broccoli as influenced by integrated use of OM and CF at Joydebpur, Gazipur

Treatment	Chemical fertilizer	PM	CD	Yield	(t ha ⁻¹)	Yield increase (%)
		t	ha ⁻¹	2002-03	2003-04	
T ₁	100% RD*	2.5	0	25.34a	23.5a	510
T ₂	100% RD	0	2.5	21.5cd	19.9bc	417
T ₃	100% RD	0	0	20.0d	18.3cd	379
T ₄	50% RD	0	0	10.58f	10.9ef	169
T ₅	50% RD	5	0	22.6bc	20.7bc	442
T ₆	50% RD	10	0	24.4ab	22.2ab	482
T ₇	50% RD	0	10	19.3d	17.2d	355
T ₈	25% RD	10	0	14.6e	13.0e	245
T ₉	25% RD	0	10	9.4fg	10.1f	144
T ₁₀	0	10	0	9.16fg	9.54fg	133
T ₁₁	0	10	10	7.42g	7.61g	88
T ₁₂	Abs	olute control	• 	3.80h	4.20h	-
CV (%)				8.6	9.2	

*RD (kg ha⁻¹) = $N_{140} P_{45} K_{80} S_{25} Zn_2 B_1 Mo_{0.5}$

CD = cow dung and PM = poultry manure

Table 3. Effect of N fertilizer use together with residual effect of OM and CFs* on the yield and yield contributing characters of okra at Joydebpur, Gazipur

Treatment	N fertilizer	No. of fruit	s plant ⁻¹	Fruit yie	eld (t/ha)	Yield increase (%)
		2002-03	2003-04	2002-03	2003-04	
T ₁	100% RD**	34.8a	29.3a	13.72a	10.88 a	611
T ₂	100% RD	28.6bc	23.3bc	11.26bc	8.48bc	470
T ₃	100% RD	27.3bc	22.0c	10.48bc	7.86bc	430
T ₄	50% RD	17.3d	15.0d	4.55e	4.72de	168
T ₅	50% RD	30.2b	24.8b	11.78b	8.86b	496
T ₆	50% RD	33.6a	27.9a	13.34a	10.24a	580
T ₇	50% RD	26.1c	21.6c	10.00c	7.46c	405
T ₈	25% RD	19.8d	16.8d	7.56d	5.66d	282
T ₉	25% RD	13.5e	11.3e	4.30e	4.58f	157
T ₁₀	0	17.0d	14.2d	3.90e	3.38ef	110
T ₁₁	0	11.5e	9.2e	3.52e	2.98f	88
T ₁₂	Absolute control	7.4f	5.1f	1.86f	1.60g	-
CV (%)		7.4	5.1	9.8	10.8	

* Residue of broccoli treatment with organic manures and chemical fertilizers

**RD (kg ha_{-1}) = N_{150}

Table 4. Yield of cabbage as influenced by integrated use of organic manure and chemical fertilizer at Joydebpur during 2001-02 and 2002-03

Treatment	Chemical	CD	PM	OC	Н	ead yield (t ha ⁻	¹)	Yield
	fertilizer	t ha ⁻¹		t ha ⁻¹		2001-02	Mean	increase (%)
T ₁	100% RD*	0	0	0	67.36b	61.82cd	64.59	208
T ₂	70% RD	0	0	0	52.86d	45.24e	49.05	134
T ₃	70% RD	5	0	0	60.44c	57.22d	58.83	181
T ₄	70% RD	10	0	0	70.76b	65.56c	68.16	225
T ₅	70% RD	0	5	0	73.32b	74.86b	74.09	253
T ₆	70% RD	0	10	0	81.28a	81.80ab	81.54	289
T ₇	70% RD	0	0	2.5	84.88a	84.62a	84.75	304
T- ₈	70% RD	0	0	5	87.25a	86.94a	87.10	316
T ₉	Absolute control				22.14e	19.78f	20.96	-
CV (%)					5.6	6.4	-	-

*RD (kg ha⁻¹) = $N_{250}P_{36}K_{80}S_{40}B_2Mo_1$

Table 5. Effect of potassium and irrigation on the yield of carrot at Joydebpur, Gazipur

Treatment	Irrigation level	K dose (kg ha ⁻¹)	Mean yield (t ha ⁻¹)	Yield increase (%)
T ₁		0	8.4	-
T ₂	I ₀	75	9.2	9.3
T ₃	(No Irrigation)	100	9.2	9.3
T ₄		125	9.6	14.3
T ₅		0	8.9	6.0
T ₆	I ₁	75	9.5	13.1
T ₇	(One Irrigation at 20 DAS)	100	13.6	61.9
T ₈		125		90.5
T ₉		0	9.3	10.7
T ₁₀	\mathbf{I}_2	75	14.4	71.4
T ₁₁	(One Irrigation at 40 DAS)	100	16.1	91.7
T ₁₂		125	18.5	120.2
T ₁₃		0	10.1	20.2
T ₁₄	I ₃	75	16.6	97.6
T ₁₅	(Two Irrigation at 20 & 40 DAS)	Two Irrigation at 20 & 40 DAS)100		
T ₁₆		125	20.0	138.1

Note: Blanket dose of $N_{120}P_{40}S_{20}$ (kg ha⁻¹) + cow dung at 5 t ha⁻¹

Table 6. Effect of integrated use of chemical fertilizers and organic manure on radish and tomato under radish-tomato-red amaranth-Indian spinach cropping pattern at Joydebpur during 2000-01 and 2001-02

					X 7° - 1 - 1		(L - 1)							
Treat.	Treat	•		Chemical f	ertilizer	. ((t ha⁻¹) Radish & tomato			Red amaranth &			Tomato quivalent	
	Rad	lish		Tomato			Red am		ranth		Indiadiapispitach			yield
	2000-01	2001	02	2000-01	2001-02		2000 FM I	2	001- 02	2	000- PM	2	001- 02 D	(t ha ⁻¹)
T ₁	41.84b	41.12	2b	65.51b	68.00bc		11.35cd		11.54c t	ha	26.58d	2	7.16bc	78.70
T ₂	33.24 d 1	33.57	7d	54. 266	RD _{36.90c}		8.50 <mark>9</mark> f		9.12 <mark>8</mark>		21.34 e f	2	1.85c <mark>d</mark>	88.11
T ₃	40.12bc2	40.70)b	61.98bc	RD 4.66bc		11.8 ⁹ c		12.16		27.05c <mark>4</mark>	2	7.44b <mark>e</mark>	87.01
T ₄	45.37 <mark>b</mark> 3	45.87	7b	68. 38%]	RD 71.70b		14.1 %		14.44	ĺ	31.69B		3.0 5 65	122.22
T ₅	59.32 <mark>a</mark> 4	63.2	5a	89.87%	RD 90.57a		15.9 <mark>%</mark> a		16.18 <mark>9</mark>		47.36 <mark>8</mark>	4	48.0 <mark>4a</mark> 0	162.59
T ₆	61.35 <mark>4</mark> 5	63.58	Sa	92. 15 %	RD 93.32a		16.8 <mark>7</mark> a		17.22		47.7 4<mark>a</mark>5	4	18.62 8	166.37
T ₇	25.22 7 6	26.28	8e	43. 95%	RD 46.25d		7.0 00		7.48 <mark>0</mark>		17.46 <mark>5</mark>		8.00	50.45
T ₈	35.50ct	37.17	cd	54. 5004	RD 57.64c		9.56 d e		10.00 d e		23.92 <mark>d</mark> e	1	25.000	58.20
T ₉	40.00bc ₈	40.28	bc	59. 2186	RIØ 1.83bc		10.92 e d		11.28 <mark>10</mark>		32.16 <mark>1</mark> 9		33.64 <mark>50</mark>	109.14
T ₁₀	9.73f <mark>T</mark> 9	10.6	5f	27 .20%	RD 26.37e		3.1 29		3.28 9		9.38g5		10.420	35.09
CV (%)	7.8 T ₁₀	7.2	1	9.8onti	<mark>ol</mark> 9.3		9.4 <mark>0</mark>		6.7 <mark>(</mark>)		4.8 0		7.8 ()	-

*RD (kg ha⁻¹) = $N_{150}P_{35}K_{80}S_{10}$ for radish; $N_{150}P_{45}K_{80}S_{20}B_1$ for tomato; N_{60} for red amaranth; N_{100} for Indian spinach

Table 7. Yield of vegetables in tomato-okra-Indian spinach cropping pattern as influenced by integrated use of chemical fertilizers and organic manure at homestead of Elenga, Tangail, during 2005-06

Tr.	Chemical fertilizer	Ton	nato	Okra		Indian S Spinach			Vield (t ha ⁻¹)	Tomato equivalent	
		PM	CD	PM	CD	PM	CD	Tomato	Okra	Indian spinach	yield (t ha ⁻¹)
				t h	a ⁻¹					spinacii	
T ₁	100%RD*	0	0	0	0	0	0	64.2ab	9.7ab	36.2a	102.7
T ₂	75% RD	10	0	5	0	0	0	66.4a	20.8a	34.7ab	104.5
T ₃	75% RD	0	10	0	5	0	0	60.2b	18.8abc	32.5abc	95.76
T ₄	50% RD	10	0	10	0	0	0	58.7b	17.3bcd	30.8bc	91.78
T ₅	50% RD	0	10	0	10	0	0	53.3c	15.4cd	28.4c	73.1
CV (%)							6.5	9.8	7.3		

*RD (kg ha⁻¹) = $N^{150}P^{40}K^{80}S^{20}Zn^2B^1$ for tomato; $N_{120}P_{35}K_{70}S_{15}Zn_2B_1$ for okra and N_{120} for Indian spinach

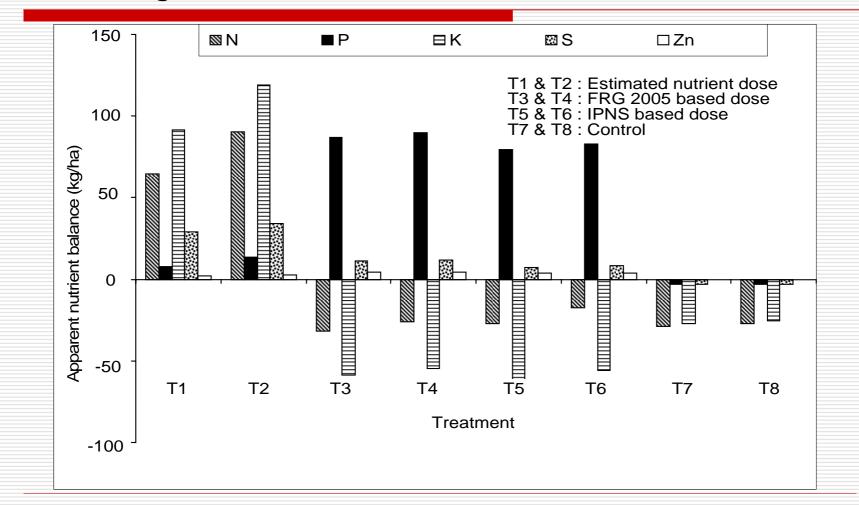
Table 8. Yield of cabbage and tomato as influenced by nutrient management and plant population under intercropping system at Jessore during 2005-06 and 2006-07

			•		
Treatment	Head yield o (cabb		Fruit yield of intercrop (tomato)		
	2005-06	2006-07	2005-06	2006-07	
		t ha	-1		
Plant population (PP)					
PP ₁ (100% main crop + 20% intercrop)	44.50	42.26	6.60b	7.43b	
PP ₂ (100% main crop + 30% intercrop)	42.88	40.34	7.41a	8.43 a	
Significance level	NS	NS	*	**	
Nutrient management (NM)					
NM ₁ (crop removal based dose)	55.97a	51.87ab	8.07kb	8.98b	
NM ₂ (FRG 2005 based dose)	57.77a	54.45a	9.99a	11 . 75a	
NM ₃ (IPNS based dose)	50.02b	49.47b	7.81b	8.57b	
NM ₄ (control)	10.99c	11.42c	2.14c	2.43c	
Significance level	*	*	*	**	
CV (%)	9.7	10.3	11.5	12.5	

*P < 0.05; **P < 0.01

Nutrient balance

An apparent nutrient balance was estimated on the basis of nutrient added to the soil and the amount of nutrient uptake by the crops in cabbage with tomato intercropping system.


The study revealed that all the nutrients showed positive balances in the NM_1 treatment (crop removal based dose) that might be due to the lower yield than the target, caused by short span winter.

Phosphorus balance was highly positive in the NM_2 package (FRG'05 based dose) and also in NM_3 (IPNS based dose) while N and K balances were negative.

The higher amount of P addition compared to the uptake (requirement) coupled with the lower yield might be the main reasons for P build-up in NM_1 & NM_3 packages.

However, S and Zn balances were positive for all the treatments except control (Shil *et al.*, 2007).

Fig. 1. Apparent nutrient balances for different treatments under cabbage with tomato intercropping system at RARS, Jessore during 2005-06

Soil fertility status

Studies regarding the post-harvest soil fertility status after the cultivation of vegetable crops were not done widely so far. However, the fertility status of post-harvest soil after the cultivation of tomato under integrated nutrient management approach revealed (Noor *et al.*, 2006) that the content of organic matter slightly improved (by 18%) when higher rate of poultry manure was applied. Table 9. Pre- and post-harvest soil fertility status of tomato plots grown under integrated nutrient management approach at Central Farm, BARI, Joydebpur, during 2004-05

Treatment	pН	ОМ	Total N	K	P S		Zn	В				
		(%)	(%)	(meq/100 g)	ppm							
	Initial											
	6.1	1.9	0.09	0.21	12	10	1.5	0.35				
		•	Р	ost-harvest	•	•						
T ₁	6.2	1.9	0.10	0.18	22	13	1.8	0.35				
T ₂	6.2	2.2	0.08	0.17	21	12	1.7	0.32				
T ₃	6.3	1.8	0.08	0.15	20	12	1.6	0.30				
T ₄	6.1	1.7	0.07	0.14	19	11	1.6	0.28				
T ₅	6.0	1.9	0.09	0.14	18	12	1.7	0.29				
T ₆	6.1	2.1	0.11	0.16	20	13	1.9	0.34				
T ₇	6.2	1.8	0.09	0.14	17	11	1.7	0.25				
T ₈	6.1	1.9	0.10	0.13	14	11	1.7	0.22				
T ₉	6.0	1.7	0.07	0.13	14	10	1.6	0.23				
T ₁₀	5.9	1.8	0.08	0.12	16	12	1.7	0.24				
T ₁₁	6.1	1.7	0.07	0.10	14	10	1.5	0.20				
T ₁₂	6.0	1.7	0.06	0.09	13	10	1.3	0.18				
Critical level	-	-	0.12	0.20	14	14	2.0	0.20				

Cost and return

Economic analysis revealed that higher dose of organic manure along with chemical fertilizer gave lower marginal rate of return (MRR) due to higher cost involvement (cost dominated) even if its gross margin was higher.

However, moderate dose of organic manure along with chemical fertilizer appeared as cost un-dominated showing higher MRR as well as economic benefit in most cases. Considering the gross margin, economic benefit (MRR), quality (shape, size and appearance) and quantity (yield) of the product, cost and availability of manures, soil fertility regeneration, the moderate dose of poultry manure (5 t ha⁻¹) along with 50-75% chemical fertilizer from the present recommendation may be regarded as the best suited combination for the cultivation of major vegetable crops.

Conclusions

- Yield of different vegetables increased substantially due to integrated use of both organic manure and chemical fertilizers.
- Poultry manure appeared as the best source of organic manure over cow dung.
- Integrated use of both chemical fertilizer and poultry manure may reduce the use of chemical fertilizer from the present conventional recommendation.
- Further depletion of soil fertility may be checked with positive trend of improvement.
- Moderate dose of poultry manure along with chemical fertilizer appeared as cost un-dominated providing higher marginal rate of return.

Recommendations

Moderate dose of poultry manure (5 t ha⁻¹) along with 50-75% recommended dose of chemical fertilizer for the respective crop may be recommended for the major vegetable crops and their patterns for yield sustainability and improvement of soil fertility in Bangladesh.

Future research suggested

Further research should be undertaken on location specific (agro-ecological zone based) appropriate INM system for different crops and cropping patterns through integrating chemical fertilizers and all possible sources of organic manures depending on their availability and considering their environmental, agronomical and economical perspectives as well as possibilities.

Tomato

Broccoli

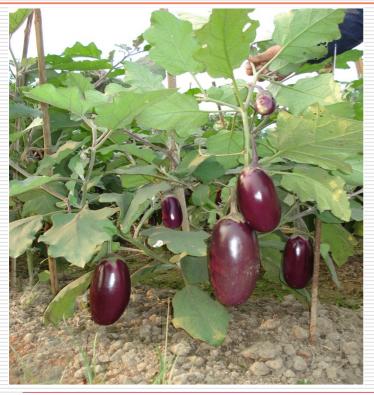
BARI Tomato-3

Homestead vegetable

Cabbage

BARI Fulcopi-2

BARI Bandha Kopi-1 (Provati)


BARI Mula-1 (Tasaki mula)

BARI Begun-8

BARI Hybrid Begun-2 (Tarapuri)

BARI Begun-4 (Kazla)

BARI Potol-2

BARI Seem-1

BARI Jhar Seem-1 (French bean)

BARI Lau-2

BARI Karola-1

