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This effect appears to be associated with the ability of Ca to withdraw Cl
from the xylem stream, particularly in the basal stem and roots. Comparison
of the effects of the same concentration of KCl and CaCl2 (Kafkafi et al.,
1992) showed that inhibition of the influx of 13NO3 in tomato and melon was
caused by high Ca in the solution rather than by Cl. Decreasing the Na : Ca
ratio under saline conditions had no effect on Cl concentrations in tomato or
cucumber, but Cl concentrations were decreased in the roots and increased in
the shoots (Al-Harbi, 1995). The Cl concentrations in cotton tended to
decrease initially and then increase as the CaCl2 concentration increased, but
were largely unaffected by changes in external CaCl2 (Gorham and Bridges,
1995).
Compared to SO4 and NO3, increasing the concentration of Cl from 3 mM to
13 mM stimulated Ca uptake by tomato, which decreased blossom end rot
(BER) but caused more gold specks injury (Nukaya et al., 1991). Partial
substitution of KNO3 with KCl salts in culture solution also increased the
gold specks (Hand and Fussell, 1995). It is not clear that why a large Cl
supply resulted in greater Ca content in plants (De Kreij et al., 1992).

3.5. Plant positive responses to potassium and chloride

3.5.1. Yield response to potassium

The K requirement for optimal plant growth ranges from 20 to 50 g kg -1 dry
weight in the vegetative organs, fleshy fruits, and tubers (Marschner, 1995;
Fageria et al., 1991). The recommended amount of K for fruit tree are much
less and most recommendations are still based on data from various sources
that were published more than 50 years ago (Jones et al., 1991). For example,
for apples (Chapman, 1966) the recommended foliar K concentrations in
1931 was 4.2-16.5 g kg -1 of leaf dry weight; by 1948 this was changed to 12-
37 g kg -1. For blueberries the recommended sufficiency K range was 1.0-1.5
g kg-1 of leaf dry matter in 1951 despite the fact that a shortage of K was
associated with terminal growing point abortion (Cain and Eck, 1966).
Abundant information exists on the concentration of K in crop leaves but
only limited information is available on leaf K in relation to time during the
development of the reproductive organs, especially to final yields in fruit
trees. The effects of fruiting or fruit load on foliar K concentrations are
shown in Fig. 3.16. It is uncertain why foliar K levels for fruits, such as
blueberry, grapefruit, orange and avocado, recommended by field advisors in
some countries, are still very small (Table 3.4) despite the available
information that suggests that much larger amounts of K are required.
Eck (1983) recommended an optimum K sufficiency range between 4.5 and
5.5g kg-1 for blueberry. However, these data were based on foliar samples
taken one week after harvest. This is the period when foliar K is at a
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minimum and has little bearing on the true K status or requirement of the
plant for maximum productivity. It is clear from the compiled data of Fageria
et al. (1991) and Jones et al. (1991) (Table 3.4) that what is considered as the
upper sufficiency limit for K for most fruit trees corresponds to the lowest
levels for vegetables.

Table 3.4. Foliar K contents of fruit crops, vegetables, and other annual
crops.

Name Name

Deficient Adequate High Deficient Adequate High

Fruits Fruits

Almond 10 14 14 Papaya 28 33 55

Apple 10 15 20 Peach 10 20

Apricot 20 25 30 Pear 8 10

Avocado 3.5 7.5 20 Pecan 8 12

Banana 30 38 50 Pineapple 20 22

Blueberry Plum, Prune 10 16
   Highbush 3 5 9 Raspberry 10 15

Rabbiteye 3.5 6 9 Walnut 9 12

Cashew 7.2 8.9 14.4

Cherry Vegetables

     Sour 12 16 21 Garlic 30 39

     Sweet 15 25 30 Tomato 10 29

Citrus 7 7--11 12--17 Watermelon 30 35

Cranberry 4 8 8

Currant 8 14 17 Annual crops
Fig 7 9 10 Barley 20--28 23--41

Grape 10 13 14 Common bean 15--35

Grapefruit Corn 20--25

  Nonfruiting 6 8 22 Cowpea 20--25

  Fruiting 6 8 22 Potato 35--65

Hazelnut 4 7 24 Rice 29--35

Lemon 7 10 20 Sorghum 15 15--20 20--30

Macadamia 4 5 10 Soybean 12 17--25 26--28

Mandarin 4.7 9 11 Sugarbeets 10
Oil palm 16 17 19 Sugarcane 12--20

Orange 4 7 11 Wheat 20--26 23--36 32--36

Based on Fageria et al. (1991) and Jones et al . (1991) 

K level (g kg-1 DM) K level (g kg-1 DM)
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Leigh and Wyn Jones (1984) considered a simple two-compartment model
for K vacuole and cytoplasm. Potassium stored in the vacuole acts as a
reserve pool which maintains the active cytoplasm K at a near constant level.
If this model is correct, the concentration of K in the cytoplasm may be
satisfied for the proper functioning of a large number of enzyme systems,
while the fruit yield may be small. Low levels of mobile K in the vacuolar
reserves can limit the flow of K to the developing fruit especially over short
time periods. It seems reasonable that the K accumulated in mature leaves
and stems at the start of fruit setting or grain filling should not only meet the
K need of the developing fruits and seeds, as determined by final yield target,
but also maintain the minimum K concentration needed for the biochemical
functions in the cytoplasm in leaf cells.

3.5.2. Yield response to chloride

Chloride deficiencies in plants generally occur at inland sites (Fixen, 1987).
Substantial responses to Cl containing fertilizers have been reported for
different crops in many parts of the world: coconut (von Uexküll and
Sanders, 1986), corn (Heckman, 1995), kiwifruit (Smith et al., 1987), oil
palm (von Uexküll, 1990), potato (Gausman et al., 1958a), spring wheat and
barley (Fixen et al., 1986; Engel et al., 1994), tobacco (Li et al., 1994), and
sugar beet (Zhou and Zhang, 1992). The probability of Cl deficiency in field
situations and thus response to Cl fertilization, increases in plant species with
a high Cl requirement, such as wheat, sugar beet, kiwifruit, palm trees, and in
highly leached soils with a low input of Cl from rain and other sources.
There is a wide range in the concentration of Cl at which deficiency in plants
occurs. It varies between 0.13 g kg -1 for spinach and 5.7 g kg -1 for sugar beet
(Table 3.5). In wheat, the Cl concentration of leaf tissue at heading is a good
predictor of the response to Cl fertilization (Engel et al., 1998); the critical
range is between 1.5 and 4 g kg -1 DM, above which no further response is
expected (Fig. 3.17). The recommended application rate of Cl is 11.2-33.6 kg
ha-1 when Cl deficiencies are suspected (Mortvedt et al., 1999).
In pot experiments, positive responses to Cl at 100-200 mg kg -1 soil were
reported for white potato, peanut, tomato and young may trees, and at 100-
1600 mg kg-1 soil for sugar beet (Jing et al., 1992). On a sandy loam soil, Cl
applications of up to 400 kg ha-1 yielded 500-1500 kg ha-1 more corn grain
than was obtained in the control (Heckman, 1995). Grain yields of corn were
positively correlated with increases in Cl concentrations in the leaves. In
wheat, there was no yield response to Cl fertilization when the Cl content was
above 70 kg ha-1 in the top 12 cm of soil (Fixen et al., 1987).
Yield increases from Cl supplied as KCl, CaCl2, NH4Cl and NaCl have also
been associated with suppression of foliar or root diseases of wheat
(Christensen et al., 1981; Engel et al., 1997).
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Table 3.5. Chloride concentration in plants.

Plant part Deficient Normal Toxicity a

Alfalfa Medicago sativa  L. Shoot 0.65 0.9-2.7 6.1 Ozanne et al ., 1957; Eaton, 1966
Apple Malus domestica Leaves 0.1 >2.1 Eaton, 1966
Avocado Persea americana Mill. Leaves ~1.5 -  4.0 ~7.0 Bar et al ., 1997; Lahav et al., 1992
Barley Hordeum vulgare L. Heading shoot 1.2 - 4.0 >4.0 Engel et al ., 1994; 1997
Citrus Citrus sp. L. Leaves ~2.0 ~4.0 - 7.0 Bell et al ., 1997a; Bar et al ., 1997

Coconut palm Cocos nucifera  L. Leaves 2.5 - 4.5 >6.0 - 7.0 von Uexkull and Sanders, 1986
Corn Zea mays L. Ear leaves 1.1 - 10.0 >32.7 Parker et al ., 1985

Corn Zea mays L. Shoots 0.05 - 0.11 Johnson et al ., 1957

Cotton Gossypium hirsutum L. Leaves 10.0 - 25.0 >25.0 - 33.1 Tan and Shen, 1993
Grapevine Vitis vinifera L. ssp. vinifera Petioles 0.7-8.0 10.0-11.0 Downton, 1985; Eaton, 1966
Kiwifruit Actinidia deliciosa Leaves 2.1 6.0 - 13.0 >15.0 Smith et al ., 1987; Prasad et al ., 1993
Lettuce Lactuca sativa L. Leaves >0.14 2.8 - 19.8 >23.0 Johnson et al ., 1957; Wei et al ., 1989
Pear Pyrus communis Leaves <0.50 >10.0 Robinson, 1986
Peach Prunus persica Leaves 0.9-3.9 10.0-16.0 Robinson, 1986; Eaton, 1966
Groundnut Arachis hypogaea  L. Shoot <3.9 >4.6 Wang et al ., 1989
Potato Solanum tuberosum L. Mature shoot <1.0 2.0-3.3 12.2 Corbett and Gausman, 1960
Potato Solanum tuberosum L. Petioles 0.71 - 1.42 18.0 44.8 James et al., 1970; Bernstein et al ., 1951
Red clover Trifolium pratense  L. Shoot 0.15 - 0.21 Whitehead, 1985
Rice Oryza sativa L. Shoot <3.0 >7.0 - 8.0 Yin et al., 1989

Rice Oryza sativa L. Mature straw 5.1 - 10.0 >13.6 Huang et al., 1995; Zhu and Yu, 1991

Soybean Glycine max L. Merr. Leaves 0.3 - 1.5 16.7 - 24.3 Parker et al ., 1986;  Yang and Blanchar, 1993

Spinach Spinacia oleracea  L. Shoot >0.13 Robinson and Downton, 1984
Spring wheat Triticum aestivum  L. Heading shoot 1.5 3.7 - 4.7 >7.0 Fixen et al ., 1986; Wang et al ., 1989
Strawberry Fragaria vesca Shoot 1.0 - 5.0 >5.3 Wang et al ., 1989; Robinson, 1986
Subterranean clover Trifolium subterraneum L.  Shoot >1.0 Ozanne et al., 1957; 1958
Sugarbeet   Beta vulgaris L. Leaves 0.71 - 1.78 Ulrich and Ohki, 1956; Terry, 1977
Sugarbeet   Beta vulgaris L. Petioles <5.7 >7.1 - 7.2 >50.8 Ulrich & Ohki, 1956; Zhou & Zhang, 1992
Tobacco Nicotiana tabacum L. Leaves 1.2 - 10.0 >10.0 Li et al ., 1994; Eaton, 1966
Tomato Lycopersicon esculentum Mill Shoot 0.25 ~30.0 Broyer et al., 1954; Kafkafi et al ., 1982
Wheat Triticum aestivum  L. Heading shoot 1.2 - 4.0 >4.0 Engel et al ., 1994; 1997
a The plant yield declines or the plant shows visible scorching symptoms in leaves.

Crop Latin name

Concentration ranges in various tissue Cl (g kg -1 DM)

References
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Ammonium chloride produced yields of rice that were equal to or larger than
those obtained with urea and ammonium sulphate. In a glasshouse
experiment rice yields with NH4Cl were significantly lower than with
(NH4)2SO4, especially at high salinity levels (Meelu et al., 1990). With
NH4 Cl sugar cane yields exceeded or equalled those given by (NH4)2SO4 at
67-225 kg N ha-1 (about 170-570 kg Cl ha-1) (Vede Narayanan, 1990).

3.5.3. Deficiency symptoms of potassium and chloride

3.5.3.1. Potassium

The relative growth rate of plants is correlated with K transport from root to
the shoot (Pitman and Cram, 1977) and distribution and redistribution in the
plant are facilitated by the high mobility of K in the plant. Therefore, an
inadequate supply of K to plants can be diagnosed visually. Growth, defined
as the irreversible increase of cellular volume by cell division and cell
extension, involves a requirement for K to maintain the osmotic potential of
cells (Wyn Jones et al., 1979). The importance of K in turgor pressure
dependent growth has been demonstrated for cotton fiber (Dhindsa et al.,
1975) and the bean plant (Mengel and Arneke, 1982).
As a consequence of reduced turgor, leaves of K-deficient plants quickly
become flaccid when suffering from water stress. Under conditions of slight
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K deficiency leaves often become dark green or blue-green, a color change
perhaps related to greater densities of chloroplasts in K smaller, deficient
cells (Marschner and Possingham, 1975). The dark to bluish green leaves
symptom has been observed in many species: rape, potatoes, tomatoes,
lettuce, cucumbers, peas, beans, cauliflower, tobacco, sugarcane, tea, apple
and some other crops (Bergmann, 1992). A metallic bronze shine is also
observed. Bergmann (1992) collected wide color pictures showing K
deficiency symptoms in different crops. When deficiency is severe the
chloroplasts are destroyed. The typical development of K deficiency
symptoms starts with the collapse of single leaf cells and develops to spots of
necrotic tissue as well as necrosis of leaf tips and margins. Marginal and
interveinal chlorosis precedes cell degeneration in summer rape (Beringer
and Nothdurft, 1985). Necrotic margins on older leaves indicate some leaf
structural changes, and lodging of cereals suggesting insufficient stability of
stalk sclerenchymatic tissues (Beringer and Nothdurft, 1985). The interpreta-
tion of such deficiency symptoms therefore needs more detailed consideration.
As has been observed with other nutrients, K deficiency symptoms are
dependent on species and growing conditions. Chlorosis and necrosis are
generally first observed in the older leaves. Potassium seems to be preferably
exported from leaves with high metabolic activity to new growing organs
(Beringer and Nothdurft, 1985). In K deficient plants the length of stem
internodes as well as stem diameter are reduced (Wakhloo, 1975) due to
reduced activity of the cambium. Sclerenchyma fiber cells and woody
parenchyma cells in the stems of K deficient plants form thin and poorly
lignified cell walls. Therefore, K deficient plants have less mechanical
strength, which renders them susceptibility to lodging.
The visual symptom of K deficiency in cotton is cotton rust, a yellowish
white mottling on the leaf that begins on older leaves (Kerby and Adams,
1985). In potatoes, the older leaves turn dark to bluish-green, sometimes with
a metallic bronze shine, and have a scorched appearance (Bergmann, 1992)
(Plate 3.2).

3.5.3.2. Chloride

Physiological Cl deficiency symptoms in plants grown in nutrient solutions
have been well characterized. Typical symptoms of Cl deficiency include
wilting of leaves, curling of leaflets, bronzing and chlorosis similar, to those
seen with Mn deficiency, and severe inhibition of root growth (Ozanne et al.,
1957; Smith et al., 1987). A prominent symptom is restricted root growth
with stubby, club-tipped or swelling lateral branches because Cl deficiency
impaires cell division and extension. Such symptoms were found in tomato
and lettuce (Johnson, 1957), spinach (Robinson and Downton, 1984), and
kiwifruit (Smith et al., 1987). Chloride deficiency causes wilting of the
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leaflet blade tips, followed progressively by chlorosis, bronzing and necrosis
in tomato (Broyer et al., 1954). Other observed Cl deficiency symptoms
included the developing of small yellowish spots with interveinal greener
areas, premature wilting or curl of the leaf tips and margins, smaller,
narrower and wrinkled leaves, as demonstrated in kiwifruit (Smith et al.,
1987), spinach (Robinson and Downton, 1984), sugarbeet (Terry, 1977),
coconut palm (von Uexküll and Sanders, 1986), alfafa and cabbage (Johnson,
1957). The most distinctive symptom of Cl deficiency in barley was general
chlorosis of newly emerging leaves, identical symptoms to those of Cl
deficiency in cabbage (Johnson, 1957).
Chloride deficiency symptoms of plants are usually difficult to observe in the
field unless a comparison can be made between plants with and without a
deficiency. In cereal crops, restricted and highly branched root systems due to
chloride deficiency are found. Chloride deficiency is associated with delayed
maturity, smaller kernel size and increased tendency for lodging (Mortvedt et
al., 1999). A leaf spot complex (physiological leaf spot) that results in tissue
necrosis in wheat has been identified as a visible symptom of Cl nutritional
deficiency (Mortvedt et al., 1999; Engel et al., 1998) (Plate 3.3).
Adequate Cl increases stem diameter, flag leaf area and head size in small
grain crops, such as wheat and barley (Fixen, 1993). Chloride fertilization has
advanced spring wheat development by as much as 1 to 4 days and winter
wheat development by as much as 5 to 7 days in the U.S. Great Plains (Fixen,
1993). Chloride deficient coconut palm had reduced growth rates, fewer nuts
set, reduced nut size, droopy leaves, signs of moisture stress, and stem
cracking and bleeding (von Uexküll and Sanders, 1986).

3.6. Crop sensitivity to chloride

3.6.1. Effects on yield

Sensitivity to high Cl concentrations varies widely between plant species and
cultivars. Generally, many woody plant species and beans are susceptible to
Cl toxicity, whereas most non-woody crops tolerate excessive levels of Cl
(Maas, 1986). The critical Cl toxicity concentration is about 4-7 g kg -1 and
15-50 g kg-1 for sensitive and tolerant plant species, respectively (Table 3.5).
For the navel orange cv. Washington  grafted on a poor chloride excluder
rootstock, Rough Lemon, when the Cl in the leaf exceeds 2 g kg -1, the fruit
yield declines linearly with increasing leaf Cl concentration (Fig. 3.18).
However, mature leaves of citrus were able to tolerate Cl concentrations of
up to 350 mM in leaf tissue water or approximately 25 g kg -1 DM under
glasshouse conditions without sustaining permanent damage to the
photosynthetic system (Walker et al., 1982). Certain soybean varieties in the
southern U.S. are effected detrimentally by the problem can be corrected by
changing varieties (Parker et al., 1983).
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Fig. 3.18. Effect of chloride concentration in the irrigation water on chloride
concentration in leaves (a) and on fruit yield (b) of orange (Source: Cole,
1985).

The order of tolerance of common agricultural crops to chloride (Table 3.6) is
very similar to the order of the critical electrical conductivity (EC) values of
saturated soil extracts. The crop with the greatest tolerance to chloride is
sugar beet which may contain up to 50.8 g Cl kg -1 in the leaves (Zhou and
Zhang, 1992). Chinese cabbage, on the other hand, is sensitive to Cl; when
the Cl level in the irrigation water reached 80 g m-3, the dry matter percentage
was significantly decreased (Yin et al., 1989).
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Table 3.6. Critical toxicity concentrations of chloride and ECe values in soil
and in saturated soil extracts, listed in order of increasing tolerance to
chloride.

Cl (mM)a
ECe (dS m -1

)
 b mg Cl kg-1 soilc

Strawberry 10 1.0 250
Bean 10 1.0
Onion 10 1.2
Carrot 10 1.0
Radish 10 1.2
Lettuce 10 1.3 100
Turnip 10 0.9
Pepper 15 1.5
Apple 1.7 250
Sweet potato 15 1.5 300
Grape 1.8 400
Corn 15 1.7 800
Flax 15 1.7 500
Potato 15 1.7 500
Broadbean 15 1.5
Sugarcane 15 1.7
Cabbage 15 1.8 500
Spinach 20 2.0
Cucumber 25 2.5 600
Tomato 25 2.5 600
Broccoli 25 2.8
Sugarbeet 40 4.0 3200
Cowpea 50 1.3
Wheat 60 600
Sorghum 70 6.8 700
Sugarbeet 70 7.0 1600
Cotton 75 7.7 1600d

Barley 80
a, b, c

 Selected and recompiled from Maas (1986), Ayers and Wescott (1985) 
and Jing et al. (1992), respectively.
a 
Maximum Cl concentration in saturated soil extracts without loss in yield

b
 Maximum ECe value in saturated soil extracts without loss in yield

c 
Maximum soil Cl concentration above which yield decline to 95% of the 

maximum yield is observed
d
 From Tan and Shen (1993).

Crop

Critical toxicity concentration
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Corn is tolerant to high levels of soil Cl, but soybean is sensitive (Parker et
al., 1983; 1985). At soil Cl levels of 100-200 mg kg -1, even sensitive crops
such as sweet potato, white potato, sugarcane and tobacco showed no
negative effects in yield or quality (Jing et al., 1992).
The tolerance of a crop to Cl is not directly related to the concentration in the
plant tissues as is shown for different varieties of grapevine (Fig. 3.19).

(a) Chloride

(b) Cane dry matter

Fig. 3.19. Effect of chloride in irrigation water on leaf lamina chloride
concentration (a) and cane dry matter (b) of Sultana grapevine scion grafted
on three rootstocks (Recalculated and redrawn from Downton, 1985).
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Scions on Dogridge rootstock contained the highest leaf Cl concentration but
exhibited the greatest growth and were the least affected by salinity
(Downton, 1985). There was no relationship between the amount of chloride
in different plant parts and cane weight. Similar findings were reported by
Skene and Barlass (1988) for two rootstocks of grapevine. Dry matter yields
of the whole plant and Cl levels in the leaves of the salt tolerant avocado
cultivar Degania-113  were higher than in the salt-sensitive cultivar Smith
(Bar et al., 1997). A salt tolerant alfalfa variety accumulated considerably
higher concentrations of Na and Cl than did the salt-sensitive variety (Ashraf
and O'Leary, 1994). The salt-tolerant and salt-sensitive accessions of
safflower did not differ in tissue Cl, K or Ca (Ashraf and Fatima, 1995). It
seems likely that factors associated with vigorous growth or Cl
compartmentation within the cell could offset the inhibitory effects of Cl
accumulation. The level of accumulated Cl in the plant should therefore not
be considered as the sole criterion of crop tolerance to Cl.
Plants are generally more tolerant of soil salinity during cooler seasons than
in warmer ones (Pasternak and De-Malach, 1995). Berry, citrus, vegetable,
conifer and ornamental plants show varying degrees of tolerance to Cl,
particularly in the seedling stage. The salt tolerance of citrus rootstock varies
with the stage of seedling development (Zekri, 1993). Cucumber is more salt
tolerant during germination than during the vegetative or fruiting stages
(Chartzoulakis, 1991).

3.6.2. Symptoms of excess chloride

Compared with Cl deficiency, the effect on crops of Cl excess in the field is
relatively common. The typical symptoms of excess Cl in woody plants are
premature yellowing of leaves, burning of leaf tips and margins and bronzing
followed by abscission of leaves at high levels of Cl. Chloride toxicity
symptoms in soybean appear on older leaves during vegetative growth,
especially at the stage from flowering to pod developing, and progress
upwards through the plant until the entire foliage is affected (Parker et al.,
1986). The most striking symptom is that older leaves turn yellow followed
by drying and curling, scorching and defoliation (Parker et al., 1983).
Chloride toxicity symptoms are more severe under drought stress.
The degree of damage caused by excess Cl is influenced both by rootstock
and by nitrate as demonstrated in avocado. For example, in Ettinger avocado
plants grown on the Mexican rootstock, the Cl toxicity symptoms appeared
mainly in the leaves and shoots with almost no effect on the roots, whereas
the main toxic influence of Cl on the West Indian rootstock, appeared in the
root system, with reduced root weight and increased shoot/root ratios
(Wiesman, 1995).
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Chloride toxicity in plants is often hard to diagnose for two reasons: (1) it is
difficult to separate the effects of Cl from those of any accompanying cation,
commonly Na; and (2) it is difficult to distinguish between the specific toxic
effects of ions and the cellular dehydration caused by their excessive external
concentrations. Visual symptoms of marginal leaf necrosis due to Cl
accumulation such as those seen in avocado might be misleading, as similar
symptoms in mango (Plate 3.4) are the result of iron deficiency (Xu et al.,
1999b). Citrus sensitive plants shed their leaves when exposed to salts but do
not exhibit leaf necrosis (Bar et al., 1997).

3.7. Potassium chloride and crop quality

3.7.1. Potassium and crop quality

Potassium has been described as the quality element for crop production
(Usherwood, 1985). Potassium functions in photosynthesis, respiration,
assimilate translocation, as well as in numerous enzyme systems which
results in great influences both on growth and on the quality of the
marketable plant parts and fruits. The influence of K on quality can also be
indirect as a result of its positive interaction with other nutrients and
production practices. However, quality varies with the crop, the plant part to
be marketed and the intended use, therefore, standards for comparison are
needed to evaluate the role of K on quality.
Potassium promotes N absorption, stimulating amino acid translocation from
vegetative shoot to the grain that favors the synthesis of gluten and prolamine
(Mengel et al., 1981), as well as the formation of proteins that improve
baking quality (Usherwood, 1985). Potassium application increases the starch
content of rice, wheat (Kemmler, 1983), corn (Raja, 1972), soybean (Jeffers
et al., 1982), sesame (Mitchell et al., 1976) and some forage crops
(Usherwood, 1985).
The positive effect of K on the oil content of crops has been reported for
sesame, soybean, rape and cotton seeds (Usherwood, 1985; Weber, 1985). In
India, applying K increased the oil percent in groundnut by 1-2% (Weber,
1985; Golakyia, 1999).
Potassium application not only increased the K content of orchard grass but
also increased protein N and decreased non protein N, producing higher
digestible dry matter and protein yields of corn silage (Keeney et al., 1967,
cited by Usherwood, 1985). This resulted in an improved feeding value of the
forage for livestock.
Recent experiments in India showed that applying K to potatoes significantly
increased both true protein and vitamin C contents, and in addition, increased
the yield of large and medium size tubers and decreased weight loss from the
tubers after harvest (Imas, 1999). Potassium deficiency causes accumulation
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of reducing sugars and decreases the starch content in potato tubers, thus
producing dark colored chips (Perrenoud, 1983). Internal blackening of potato
tubers may be related to a high content of tyrosine caused by K deficiency.
Potassium application increased boll size of cotton, improved micronaire
value, fiber strength, and fiber length and increased the percentage of mature
fibers (Cassman et al., 1990). They concluded that K supply to the cotton
fruit was an important determinant of fiber quality under field conditions and
that the K requirement for producing a high lint yield with acceptable quality
could differ among genotypes. Pettigrew and Meredith (1997) further
observed that K deficiency of cotton reduced the assimilation capacity
associated with decreased lint yield and poorer fiber quality.
In citrus, K nutrition positively influences the size of fruit, thickness of the
rind, and fruit color. The improved yield is due, in part, to reduced fruit fall
from the tree and larger fruit size. Potassium also improves the citric and
ascorbic acid (vitamin C) content of the juice, and other juice characteristics,
like the acid/sugar ratio and soluble solids content (Koo, 1985).
With proper K nutrition, tomato fruit is generally higher in total solids,
sugars, acids, carotene, and lycopene, as well as shelf life quality (Usherwood,
1985). A large amount of K is needed to achieve not only the largest fruit
yield but also the greatest percentage of fruit suitable for marketing of tomato
(Usherwood, 1985) and of papaya (Awada and Long, 1980).
Incidences of some physiological disorders of tomatoes, such as gold specks,
puffiness, blotchy ripening complex, grey wall  and greenback  or yellow
shoulder, can be reduced by applying large amounts of K (Kinet and Peet,
1997). In a survey of 140 processing tomato fields in central California, the
incidence of the colour disorders yellow shoulder and internal white tissue,
was negatively correlated with K status of both soil and plant (Hartz et al.,
1999).
Physiological disorders of citrus fruits like plugging and creasing are
associated with high N and low K availability. Potassium deficiency resulting
in small, thin-skinned fruit promotes fruit splitting, even though extra K will
not always correct normal splitting in susceptible cultivars (Tucker et al.,
1994).
Often the amount of K required for optimum yield is also sufficient to secure
good quality. However, the need of K to enhance fruit quality, as in citrus
(Koo, 1985), is probably more critical than other aspects of yield production.
In certain crops, quality is more important than yield to secure best economic
return. In such cases more K is needed to ensure quality than is needed for
maximum yield. Such is the case for banana (Lahav and Turner, 1983),
cotton (Cassman et al., 1990), potato (Wiebel, 1997), tobacco (Colyer and
Pohlman, 1971), turf (Schery, 1968), ornamentals and some food crops
(Usherwood, 1985).
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The effects of K on shelf life are predominantly favorable, both through
slowing senescence and through a decrease of numerous physiological
diseases (Martin-Prevel, 1989). Potassium enhances storage and shipping
quality of bananas, tomatoes, potatoes, onions and many other crops, and also
extends their shelf life (Usherwood, 1985; Geraldson, 1985; Koo, 1985; von
Uexküll, 1985; Martin-Prevel, 1989; Perrenoud, 1993).
Low K nutrition of bananas results in thin and fragile bunches with shorter
shelf life (von Uexküll, 1985). Quality of citrus fruits during storage is also
influenced by the K nutrition of the tree: the incidence of stem-end rot
(Diplodia natalensis) and green mold (Penicillium digitatum) decreased as K
application increased, therefore fruit loss during transport was reduced and
shelf life in the supermarket increased (Koo, 1985). For potatoes, applying K
reduced storage losses, and this was related to a reduction in the activity of
catalase and peroxidase enzymes (Perrenoud, 1983).

3.7.2. Chloride and crop quality

Salinity improves both fruit taste and appearance quality of tomatoes and
melons (Mizrahi, 1982; Mizrahi and Pasternak 1985; Faiz et al., 1994). This
phenomenon is attributed to the significantly higher content of total soluble
solids and of aromatic and other components found in these fruits under
saline conditions (Fig. 3.20; Davies and Hobson, 1981).

Fig. 3.20. Effect of chloride concentration in saline water on fruit yield, total
soluble solids (TSS) of fruits and chloride concentration of tomato plant
(Source: Feigin et al., 1987).
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Tomato juice quality was improved when plants were grown in saline
solutions with an osmotic potential of approx. -0.45 MPa; because of greater
acidity and an increase in total suspended solids and ascorbic acid (Albu
Yaron et al., 1993).
Most of the reported salinity effects are probably due to both Na and Cl. The
specific influence of Cl on the quality of agricultural products is not clear.
Wang et al. (1989) found that the soluble sugar and vitamin C contents were
significantly higher in strawberries grown in soil containing Cl at 100-200
mg kg-1 soil than in soil containing 37 mg Cl kg -1 soil.
Chloride generally accumulates in the vegetative parts, mainly in the leaves
(Fig. 3.21) of cotton, lettuce (Wei et al., 1989), wheat, soybean and rice (Pan
et al., 1991b). The Cl content of grain, fruits and seeds is very low and is
hardly affected by the Cl concentration of the soil solution. The concentration
of Cl in sugar beet leaves increased from 9.8 to 54.1 g kg -1 with Cl
fertilization, while the concentration in the roots was only 1.5 to 1.6 g kg -1.
The sugar content of the roots was not affected by the Cl application (Zhou
and Zhang, 1992). Cotton seeds maintained a Cl concentration in the range
0.48-0.59 mg g-1 DM and the lint length was constant in the range of 28-29
mm when Cl application was increased up to 3200 mg kg -1 soil (Tan and
Shen, 1993). Addition of KCl or CaCl2 to soybean cv. Essex, a Cl
accumulator, increased the Cl concentration in the seeds, but had no
significant effect on the oil and protein content (Yang and Blanchar, 1993).
There were no negative and even some positive effects of Cl salinity on grain
quality of corn, sorghum, rice, spiked millet and wheat when Cl was applied
at a rate of up to 800 mg kg -1 soil (Wang et al., 1989; Jing et al., 1992).

Fig. 3.21. Distribution of chloride in the different organs of cotton at the boll-
opening stage (Redrawn from Tan and Shen, 1993).
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The quality of leafy vegetables is relatively sensitive to Cl. Whereas the total
fresh weight of Chinese cabbage was not affected when the Cl content of the
irrigation water was less than 150 g m-3, the dry weight and especially its
vitamin C content were markedly reduced (Yin et al., 1989). Both the soluble
sugar and the vitamin C content of lettuce decreased significantly when soil
Cl application was above 100 mg kg -1 (Wei et al, 1989). In tobacco, good leaf
quality was maintained as long as the amount of Cl in the soil was less than
72-107 mg kg -1 and the leaf Cl content was below 10 mg g-1 (Li et al., 1994).
The effects of Cl on crop quality depend mainly on the marketed plant part.
Fruit quality is generally more tolerant to high chloride than fresh leaf yield.

3.8. Potassium chloride and suppression of diseases and stresses

3.8.1. Potassium

3.8.1.1. Diseases

The role of K in crop resistance to diseases was extensively reviewed by
Perrenoud (1990) (Table 3.7). In general, an inverse relationship is found
between available soil K and the severity of disease caused by bacteria and
fungi. It is a common practice to add K fertilizers to reduce certain diseases
(Perrenoud, 1990). At low K levels (0.5 mM, 19.6 g m-3) in culture solution,
the incidence of Tikka leaf spot (Cercospora archidicola Hori.) on groundnut
averaged 56%, but decreased to 11% at 3.0 mM of K (Umar et al., 1997).
Leaf spot disease in cotton (small brown lesions caused by Cercospora,
Alternaria and Stemphylium) is related to low soil K, low plant tissue K
and/or low petiole K (Harris, 1997). Different K fertilizers (KCl, KNO3,
K2SO4, KH2PO4 and K2HPO4), applied as foliar sprays, were highly effective
inducers of systemic protection against powdery mildew (Sphaerotheca
fuliginea) in cucumbers (Reuveni et al., 1995).

Table 3.7. Influences of potassium application on disease severity caused by
different pathogens.

Pathogen Number of observations of disease incidencea)

category Total Decreased Unchanged Increased

Bacteria   144     99 (69)     14 (10)   31 (21)
Fungi 1549 1080 (70) 112 (7) 357 (23)
Viruses   186     76 (41)   14 (7)   96 (52)
Nematodes   111     37 (33)     4 (4)   70 (63)

a) Percentage of total parentheses.
Source: Perrenoud (1990).
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Potassium deficiency in late-season soybeans can lead to reduced yields and
poor seed quality caused by pod and stem blight (Diaphorte sojae L.) and
purple seed stain (Cercospora kikuchii L.) (Snyder and Ashlock, 1996). The
application of K on a soil low in available K greatly reduced stem blight and
purple seed stain (Camper and Lutz, 1977).
In potatoes, K fertilization was found to decrease the incidence on several
diseases, such as late blight (Phytophtora infestants), dry rot (Fusarium ssp.),
powdery scab (Spongospora subterranea) and early blight (Alternaria
solanii) (Perrenoud, 1990; Marschner, 1995).
The intricate relationship between K nutrition and metabolic functions and
growth, as well as its interrelationship with various other nutrients within the
plant and the soil, provide ample opportunity for K to modify disease
resistance or susceptibility. Potassium probably exerts its greatest effects on
disease through specific metabolic functions that alter compatibility
relationships of the host-parasite environment. For example, inorganic N
accumulates in tracheal sap of K deficient corn plants through the impairment
of N metabolism, which provides a more favorable environment for bacterial
growth, and subsequent susceptibility to Stewarts wilt (McNew and Spencer,
1939). In the field, increasing N rates enhanced severity of corn smut
(Ustilago maydis), while applying K suppressed its incidence by 19.6%
(Kostandi and Soliman, 1997). An increase in the N or P content of oilseed
rape plant was associated with an increase in the severity of black spot
disease (Alternaria brassicae), whereas an increase in the K content reduced
the disease index (Sharma and Kolte, 1994). In rice, K application reduced
the incidence of brown leaf spot (Helminthosporum oryzae) (Perrenoud,
1990).
In plants, K increases the production of disease inhibitory compounds, such
as phenols, phytoalexins and auxins around infection sites of resistant plants.
When K levels are below optimum, inorganic N accumulates and phenols,
that have fungicidal properties, are rapidly broken down (Kiraly, 1976).
Applied K decreased the severity of black spot disease in oilseed rape caused
by Alternaria brassicae (Sacc.) Berk  due to the increased production of total
phenolics at all stages of plant growth. The phenolics inhibited conidial
germination and decreased sporulation of A. brassicae (Sharma and Kolte,
1994).
The nutritional balance is frequently as important as the level of a single
nutrient. This is perhaps one of the causes why K application in some cases
can aggravate plant diseases (Table 3.7). The Ca and K balance determines
resistance to gall diseases through their effect on cell growth and division.
Increased susceptibility of potato to Streptomyces scab induced by high levels
of K is probably related to drastically altered periderm cells and enhanced
cell division (Huber and Arny, 1985), whereas the increased severity of
brown rot gummosis (Phytophthora parasitica) of citrus trees induced by
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high K may be related to effects of the altered K/Ca ratio on the differential
permeability of cell membrane (Chapman, 1965, cited by Huber and Arny,
1985). The correlation coefficients between ear leaf nutrient contents and
smut disease index in corn showed variable significant effects between N
sources, but attention was drawn to the N:(K+Ca+Mg) ratio in plant tissue for
the better interpretation of the incidence of smut disease (Kostandi and
Soliman, 1997).

3.8.1.2. Stresses

3.8.1.2.1. Lodging

Plant lodging is due to insufficient mechanical strength, to diseases or pests
or to combination of these factors; and is strongly influenced by K nutrition
(Quintanilla Rejado, 1978). Increases in the thickness of sclerenchymatic
tissue layers by improved K nutrition are reported for wheat, rice and corn
(Beringer and Nothdurft, 1985). Potassium speeds up lignification of the
schlerenchyma cells and increases cell wall thickness, confering mechanical
strength and thus resistance to lodging (Quintanilla Rejado, 1978; von
Uexküll, 1993).
Large cereal yields require large application of N which the plant must
tolerate without lodging. Nitrogen fertilization leads to much vegetative
growth, and if K is not applied together with N, plants may lodge, especially
certain varieties. In rice, K increases the thickness of the culm walls at the
lower part of the stem, increasing the breaking strength of the culm and thus
the resistance to lodging, especially when much N is applied (von Uexküll,
1993). Potassium application increased rape plant’s resistance to lodging, and
decreased seed black spot disease infection (Sharma and Kolte, 1994).
Weak corn stalks are especially abundant with high rates of N and
insufficient levels of K. Maintaining a sufficient K supply is necessary to
prevent corn lodging with large plant populations (Welch and Flannery,
1985). Field trials in corn testing four levels of N, P and K showed that N and
P had little or no effect on stalk quality characteristics, while K reduced the
proportion of senescent stems and stem lodging, and increased the crushing
strength and rind thickness (Arnold et al., 1974). Results from 19
experiments in China show that K fertilization not only resulted in an
increase in grain yield, but also reduced plant lodging, from 85% without K
to 15% with 100 kg K ha-1 (Corazzina et al., 1991). Potassium deficiency in
corn reduces root development, especially of adventitious roots, which in
turn, increases the risk of lodging (Quintanilla Rejado, 1978).
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3.8.1.2.2. Frosting and chilling

Plants receiving an inadequate K supply are often more susceptible to frost
damage (Marschner, 1995). Improved frost hardiness is attributed to a
number of physiological and morphological factors like: healthy, deep roots,
large xylem vessels, high content of sugars and reserve carbohydrates,
reduced transpiration and water loss (Kemmler and Krauss, 1989). Potassium
acts positively on most of these factors thus decreasing winter injury.
An adequate level of K in the plant can increase the osmotic potential in cell
vacuoles, and thus increase the plant’s chilling tolerance. It is recommended
to keep high K concentrations in the soil and in the plant in order to increase
the soluble carbohydrate content that may reduce the damage to plant tissues
due to cold stress (Kafkafi, 1990).
The effect of different sources and levels of K on chilling tolerance was
reported for seedlings of tomato, pepper and eggplant (Hakerlerker et al.,
1997). Improved frost resistance due to K is also reported for potato, artichoke,
strawberry, grapes, clover and lucerne (Beringer and Trolldenier, 1978).
Grewal and Singh (1980) found for potatoes an inverse relationship between
the K content in the leaves and the percentage of foliage damage by frost in
14 field experiments conducted in India. Increasing K application, increased
tuber yield and the K content of the leaves which, in turn, reduced frost
damage. Another experiment in India showed that 167 kg K ha-1 reduced
frost damage from 38% to 7% (Perrenoud, 1983). In India, KCl has
established its superiority over K2SO4 in developing frost resistance in potato
(Grewal et al., 1991). Therefore, in the north-western plains of India where
frost is a problem, the application of KCl is recommended.
The importance of an adequate supply of K on winter hardiness of cereals has
been well documented (Beringer and Trolldenier, 1978; Kemmler, 1983). In
experiments done in the former Soviet Union, losses due to winter kill were
lowest in plots that received a complete NPK treatment in autumn, followed
by the plots with a KCl treatment (Kemmler, 1983). Khorshid and Seiji
(1993) found that increasing the K application up to 350 kg K ha-1 increased
the growth and winter hardiness of ryegrass.

3.8.1.2.3. Drought

It is well documented that plants adequately supplied with K can utilize soil
moisture more efficiently than K deficient plants (Tanguilig et al., 1988; Li et
al., 1993; Abd El-Hadi et al., 1997). Wilting of plants is a symptom
suggesting possible K deficiency (Beringer and Trolldenier, 1978). The
positive effects of K on drought tolerance are both through the enhanced
water uptake by the roots and through the reduction of transpirational water
loss (Beringer and Trolldenier, 1978).
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Li et al. (1993) found that applying K to soybeans increased drought
resistance through the  increased development of vascular bundles in soybean
roots, stems and leaves, and thus an increased ability to take up water and
nutrients. Also K increased the bound water in cells and significantly
increased yield under drought conditions.
Lösch et al. (1992) noted that water use efficiency by barley was improved
up to 12% because stomatal size and density in the flag leaf differed between
low (50 kg K ha-1) and high K plants (200 kg K ha-1). Thus leaf conductance,
calculated from stomatal pore dimensions, was reduced when plants were
supplied with 200 kg K ha-1. Therefore, the beneficial effect of K on water
use efficiency may stem from a better control of transpirational water loss as
a result of modified stomatal sizes and densities (Lösch et al., 1992).
Potassium application could lessen detrimental effects of drought and soil
compaction on root growth and yield of upland rice (Tanguilig et al., 1988).
These authors found that 75 kg K ha-1 increased rice root mass density both
in well-watered and stressed treatments. When K was applied, soil
compaction did not decrease grain yield even with a low water supply.
Potassium application reduced significantly the decline in the photosynthesis
rate of wheat leaves caused by drought stress (Gupta et al., 1989). The
protective role of K in plants suffering from drought stress has been
attributed to the maintenance of a high pH in stroma and against the photo-
oxidative damage to chloroplasts (Cakmak, 1997).

3.8.2. Chloride and diseases

The effects of soil Cl and plant nutrition on plant diseases have been the
subject of a number of investigations over the past two decades. In studies of
the influence of K on disease reduction (Huber and Arny, 1985), KCl was
tested and the observed effects were ascribed to K, while the role of Cl was
not considered. Chloride has been shown to aid in the suppression of diseases
such as stalk rot of corn (Diplodia maydis; Gibberella zeae) (Younts and
Musgrave, 1958), yellow rust (Fusarium spp.) in winter wheat (Russell,
1978), take-all root rot (Gaeumannnomyces graminis var. tritici) in wheat
(Christensen et al., 1981; Taylor et al., 1981) and root and crown rot
(Rhizoctonia solani) in sugar beet (Elmer, 1997).
Potassium fertilization reduced leaf rust (Puccinia triticina) severity and
improved wheat yield by increasing grain weight, but this response was
attributed partially to the Cl in the KCl fertilizer (Sweeney et al., 2000).
Christensen et al. (1981) showed that the Cl anion is responsible for the
suppression of take-all root rot (Gaeumannimyces graminis) in wheat,
provided there is sufficient K for optimum wheat nutrition. The lower
chemical potential of water in roots supplied with Cl probably reduced root
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colonization by the pathogen. (Christensen et al., 1981). Chloride applied at
76 kg Cl ha-1 significantly increased grain yield by an average of 0.5 t ha-1 by
reducing stress from take-all root rot (Scheyer et al., 1987).
Experiments comparing the effect of KCl vs. K2SO4 showed that yield loss
due to take-all was higher with K2SO4 than with KCl (Trolldenier, 1985), and
that KCl was more effective than K2SO4 in decreasing powdery mildew
(Erysiphe graminis) development in wheat (Grybauskas et al., 1988).
Common root rot (Cochliobulus sativus) in barley was significantly reduced
by fertilization with KCl, but not with K2SO4 (Shefelbine, 1986).
The Cl suppression of root and crown rot (Rhizoctonia solanis) in sugar beets
was independent of the Cl source. KCl, CaCl2, MgCl2 and NaCl did not differ
in their ability to suppress the disease (Elmer, 1997). Both KCl and NH4Cl
equally reduced common root rot severity in barley (Shefelbine, 1986). In
asparagus, both NaCl and KCl amelioriated Fusarium crown and root rot
(Fusarium oxysporum), but NaCl was superior (Elmer, 1992).
Heckman (1998) confirmed the specific effect of Cl in controlling the
incidence of corn stalk rot by comparing equal amounts of K supplied as
K2SO4 or KCl. The Cl concentration in the ear leaf was increased more than
four-fold by KCl and the incidence of stalk rot was reduced by more than
half. Retention of moisture in the maturing plants and a delayed senescence
due to enhanced Cl nutrition may explain the suppression of stalk rot.
Chloride in macronutrient fertilizers was found to partially control a number
of plant diseases in different crop species (Table 3.8).
Whether these responses involve a direct effect of Cl on the plant pathogen or
increased host tolerance has not always been clear. The effect of Cl appears
to be distinct from that of its accompanying cation. Huber and Arny (1985)
explained the early reported effects of Cl on stalk rot in terms of a
competitive effect of Cl on NO3 absorption (see Chapter 3.4.5), and the
resulting influence on rhizosphere pH. Fertilization with KCl reduced
common root rot in barley, and this effect was closely related to decreased
NO3 concentrations and increased Cl concentrations in the plant tissue (Goos
et al., 1987). An important effect of Cl, when added to the soil in sufficient
quantity, is the temporary suppression of nitrification (see Chapter 2.3).
Huber and Wilhelm (1988) argue that inhibition of nitrification suppresses
take-all and other diseases via a decrease in rhizosphere pH as a result of
increased uptake of ammonium-N

 
and decreased uptake of nitrate-N. This in

turn increases the availability and uptake of Mn, which is implicated in
disease suppression (Elmer, 1995). Ammonium may also affect host
physiology in other ways, leading to increase the resistance to diseases.
Christensen et al. (1986) provided clear evidence on the change in the ratio of
soil NH4 to NO3 induced by Cl, and linked it to the suppression of take-all.
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Table 3.8. Crops and associated diseases suppressed by chloride.

Diseases
Crop Common name Scientific name Source

Asparagus Crown and root rot Fusarium oxysporum Elmer, 1992

Barley Common root rot Cochliobulus sativus Shefelbine, 1986
Goos et al., 1987

Celery Fusarium yellows Fusarium oxysporum Schneider, 1985

Coconut Gray leaf spot Pestalozzia palmarum Fixen, 1993

Corn Stalk rot
Diplodia maydis
Gibberella zeae Fixen, 1993

Pearl millet Downy mildew Sclerospora graminicola Fixen, 1993

Stem rot Helminthosporium sigmoideum Fixen, 1993Rice
Sheath blight Rhizoctonia solanis Fixen, 1993

Sugar beet Root and crown rot Rhizoctonia solanis Elmer, 1997

Common root rot Helminthosporium sativum Fixen, 1993
Glum blotch Septoria nodorum Fixen, 1993
Leaf rust Puccinia recondita Fixen, 1993
Stripe rust Puccinia striiformis Scheyer et al., 1987
Powdery mildew Erysiphe graminis Grybauskas et al., 1988
Take-all rot Gaeumannimyces graminis Scheyer et al., 1987

Wheat

Tanspot Pyrenophora tritici-repentis Fixen, 1993
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An intriguing possibility is the direct Cl-mediated release of Mn from soils
(Krishnamurti and Huang, 1988). Microbial activity could trigger a process
whereby Cl increased the reduction of MnO2, and thus increased the available
Mn following application of Cl salts (Norvell, 1988). Chloride application
increased the population of Mn-reducing bacteria, which increased Mn2+

concentration at the root surface at such a level that was toxic to Fusarium
and suppressed root rot disease in asparagus (Elmer, 1995).
Potassium chloride applied as a foliar spray in wheat significantly reduced
the percentage leaf area affected by powdery mildew (Erysiphe graminis)
(Cook et al., 1995). The reduction in the disease was associated with
increases in the leaf water potential. This explanation was suggested as a
polyethylene glycol solution with an equivalent osmotic potential to KCl also
exerted the same effect. The authors concluded that both the inhibition of
germination and the reduction of the disease symptoms may be due to the
physico-chemical properties of the KCl fertilizer rather than metabolic
toxicity or nutritional effects on the host.
Environmental conditions such as temperature, humidity and light intensity
strongly contribute to the occurrence and severity of diseases, and also affect
the uptake and physiological functions of the major nutrients. Thier et al.
(1986) concluded that Cl fertilization of wheat grown under their experi-
mental conditions did not offer any measurable protection against powdery
mildew. Therefore, the local climate conditions during the growing season
influence the relationship between the K and Cl nutritional status of crops.

3.9. Plant tissue analysis of potassium and chloride

3.9.1. Diagnosis of plant potassium nutrition

Leaf analysis has been widely used in an attempt to define the nutritional
status of plants for fertilizer recommendations (Jones et al., 1991; Reuter and
Robinson, 1986). The concentration of tissue K is usually defined as low
(deficient), adequate (sufficient), or high (excessive) concentrations for a
particular plant organ (Table 3.9), sometimes at an identifiable plant
developmental stage, but the definition of "low" and "high" concentration
varies between plants (Table 3.4).
Potassium uptake usually precedes dry matter production (Fageria et al.,
1991). Leaf K concentration varies with time during growth (Kafkafi et al.,
1978). Values of critical leaf K content for field crops vary between 12 g kg -1

and 20 g kg -1 (Table 3.4) at about shooting or flowering stage (Fageria et al.,
1991). The critical value depends on crop, variety, growth stage, sampled
vegetative part and climate. A significant positive relation between K
concentration or K accumulation of leaves and stems at flowering and final
grain or fruit yield was presented by Kafkafi and Xu (1999). High
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concentrations of K may be necessary to achieve high yields and the desired
large fruit size to meet market demand.
Potassium is required for the proper functioning of a large number of enzyme
systems at a concentration of about 50 to 100 mM in the cytoplasm
(Barraclough and Leigh, 1993a; Marschner, 1995), however, the
concentration is larger in K sufficient plants, of the order of 200-300 mM
(Table 3.9).

Table 3.9. Potassium concentration in Valencia orange leaves.

Level

Parameters Unit Low Adequate High

K concentration in DW g K kg-1 DW 8.3 11.2 18.1

DW content g DW kg -1 FW   413   401 382

Water content g H2O kg-1 FW   587   599 618

K concentration in FW g K kg-1 DW 3.4 4.5 6.9

K concentration in leaf
solution

mM K   149   192 286

K concentration in leaf
solution

g K m-3 5826 7507 11183

Recalculated from Smith et al. (1953).

Critical plant K concentrations for growth are related to different functions of
K in plants. For example, critical K concentrations in ryegrass were 126 mM
(19 g kg-1 in DM) in plants grown on low Na soils and 82 mM (13 g kg -1 in
DM) on high Na soils, respectively, for the biophysical function of
maintaining leaf sap osmolality. However, the critical K concentration in
ryegrass was 46 mM (8 g kg -1 in DM) for the purely biochemical functions of
activating numerous enzymes (Barraclough and Leigh, 1993b). Bell et al.
(1997b) inferred the functional K concentration to specific plant functions.
Increase in putrescine levels or decline of pyruvate kinase activity are
observed when K deficiency exists. These changing activities may provide a
more accurate and consistent value for the diagnosis of K deficiency, but they
are much more expensive and cannot be used for routine laboratory analysis.
The traditional approach to plant analysis expresses nutrient concentration on
a dry matter basis. Concentrations and critical concentrations expressed in
that way change with the age and type of tissue and with other growth factors
such as the supply of other nutrients (Jones et al., 1991). This greatly reduces
the utility of plant testing for diagnostic purposes. In contrast, expressing
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nutrient concentration on a tissue water basis has several advantages (Leigh,
1989). It is more physiologically relevant especially for K because of its
importance in plant water relations. Potassium concentrations in tissue water
(KH2O) change less with plant development than do K concentration in dry
matter (KDM). In hydroponically grown barley well supplied with K, the
KH2O was constant at about 200 mM in all leaves throughout the plant growth
(Barraclough and Leigh, 1993b). This was also the case for whole barley tops
in the field during vegetative growth (Leigh and Johnston, 1983). More work
is needed on the effects of water supply on KH2O and critical KH2O
concentrations in crops. Special attention must be paid to leaf sampling in the
field to avoid water loss between sampling and weighing in the laboratory.
Hochmuth (1994) presented guidelines of plant petiole sap quick-testing of K
for vegetable crops and suggested critical values. Reasonable standardization
of sampling including crop developing stage, leaf age, leaf part, weather
condition, time of day and calibration scale, is necessary. A standard time in
the day is needed to establish sampling procedures as the petiole salt content
varies very quickly during the day (Saranga et al., 1998).
It is generally recommended to collect fleshy petioles of most recently
matured leaves which have reached maximum size. The leaf blades should be
stripped from the petioles and petioles placed in a plastic bag on ice or in a
cooler. Petioles may be stored at room temperature in a plastic bag for up to 2
h. Only petioles, not sap, should be stored. Fresh, whole (unchopped) petioles
can be stored on ice for up to 8 h or frozen overnight without appreciable
changes in sap K concentration.
The critical K concentration in the sap of fresh petioles varies from 1500-
2000 g m-3 for strawberry at its late growing stage, up to 4500-5000 g m-3 at
the early to middle growing stages of some common vegetables, such as
eggplant, potato, glasshouse tomato and watermelon (Hochmuth, 1994).

3.9.2. Analytical determination of plant potassium

Nearly all the K in plant is in the form of ionic K+ and can be extracted from
ground dry plant samples by diluted acids or salts, such as 1 M HCl, HNO3,
NH4OAc, and even by hot water (Chapman and Pratt, 1961). In many cases
the K analysis of plant is performed together with other nutrients, particularly
N and P.
There are two types of methods of plant tissue decomposition for the analysis
of total amount of mineral nutrients: dry ashing in a muffle furnace often at
500-550°C and wet digestion with strong oxidative acids. Usually dilute
acids, such as 1:1 HCl or HNO3, are used to acidify the dry ash and dissolve
the elements to solution. Common reagents used to digest plant tissue include
the acids: H2SO4-H2O2,  H2SO4-HNO3-HClO4, HNO3-HClO4, etc. (Benton
Jones et al., 1991).
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Potassium in the extracted solution is often determined by FES method as
described in section 2.4.1.2.

3.9.3. Diagnosis of plant chloride nutrition

A number of studies have been conducted to determine the need for Cl for
several crops (Fixen, 1993). The strong correlation between the Cl level in
lettuce leaves and soil Cl content is used to monitor the environmental Cl
level (Wei et al., 1989). Leaf chloride levels of Spanish moss (Tillandsia
usneoides L.) reflect the atmospheric Cl levels on the coast of Texas
(McWilliams and Sealy, 1987).
Plant Cl concentration varies greatly with plant age and plant part. The
concentration in spring wheat generally increased with time to about 4.5 g
kg-1 and 13 g kg -1 when grown with 255 kg Cl ha1 and without Cl
respectively, until 1 or 2 weeks prior to heading, and then declined to less
than 1 and 2.5 g kg -1 at maturity, respectively (Fixen, 1993). It is apparent
from these data that plant Cl is more dynamic over time in high Cl
environments than where Cl supply is limited. Chloride concentration can
also vary markedly among plant parts. Hence, interpretation of results from
plant analyses, as for all nutrients, requires that careful attention is paid to the
growth stage and plant part sampled.
There are several other factors influencing plant Cl concentration, such as
differences between cultivars and interactions between Cl and some other
elements as discussed earlier. The Cl concentration in plants is a useful
predictor of the potential for response to Cl fertilization. Engel et al. (1994)
made a comprehensive summary of the relationship between crop Cl and the
yield response of wheat and barley to Cl as shown in Fig. 3.17. It is possible
to distinguish three different levels of Cl nutrition: low, <1.2 g kg -1,
significant response expected in 78% of cases; transition, 1.2-4.0 g kg -1,
response expected in approximately 50% of cases; and adequate, >4.0 g kg -1,
few significant responses to Cl likely.

3.9.4. Analytical determination of plant chloride

Similar to plant K, plant Cl is always ionic and can be simply extracted by a
weak acid, or even hot water. The methods used for Cl determination in soil
extracts (see above section 2.4.2.2) are also often used for plant Cl. In order
to minimize interference with either electrode methods, Cl is determined in
either a 0.5 M HNO3 extract of the plant tissue, or the determination is made
after the tissue is dry ashed in the presence of access calcium oxide to prevent
Cl loss by volatilization during ashing and the ash is solubilized in dilute
HNO3 (Chapman and Pratt, 1961).
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Williams (1979) described the classic procedures of Cl determination in plant
tissue. The Cl-specific, ion-electrode procedures (LaCroix et al., 1970; Krieg
and Sung, 1977), or a solid state Cl electrode (Islam et al., 1983), are used in
place of the gravimetric and volumetric methods. The analysis of Cl using a
potentiometric titration procedure is the same for the determination of Cl in
soil extracts, except that the concentration of the titrant is generally increased
(LaCroix et al., 1970). Ion chromatography is described by Kalbasi and
Tabatabai (1985) as well as by Grunau and Swiader (1986) for the
determination of Cl in plant tissue.

3.10. A glance into the future: biotechnology, genetic engineering and
potassium

The term biotechnology relates to accelerated breeding using DNA markers
and transgenes that modify and improve the current crop production systems
(Lightfoot, 1999). The results of this biotechnological manipulation are GM
(genetically modified) crops:

• Transgenic crops developed for specific traits, with inserted genes that
confer resistance to insects and viruses or tolerate specific herbicides.
Other specific improved traits which are being sought include crops with
increased constituents such as oil, starch, sucrose or gluten; for example,
high oleic acid soybeans, or high lysine soybean and corn.

• Nutraceutical and functional foods, strains that yield valuable proteins,
enzymes or other substances, which provide medical or health benefits,
including for example plant based vaccines to prevent diarrhea and other
diseases. GM fruit and grain crops may also become the vehicle for
boosting intake of carotenoids, antioxidants, vitamin E, folates, etc. which
have been linked to the prevention of cancer, coronary disease and
degenerative nerve diseases.

The adoption of GM crops by U.S. farmers is growing very fast: GM corn
accounted for 35% of the US acreage in 1999, up from 28% in 1998. In 1999,
GM soybeans were seeded in 40 million acres, or 55%. GM cotton will total
more than half of acreage. GM potatoes are also grown and GM sugar beet
are to make their debut. These GM products offer farmers tools to increase
yields while lowering costs with little change in agronomic practices.
However, the in-field use of GM crops is a highly controversial issue
involving consumer welfare, agricultural economics, environmental and
biodiversity impacts, international trade, and has strong opposition in Europe.
Current transgenic crop developments are not focused on reducing fertilizer
inputs, but on reducing pesticide inputs. Some examples are the 'Roundup
ready soybeans' which have the gene conferring resistance to Roundup
herbicide; 'Poast-protected corn' which has the gene that gives corn tolerance
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to Poast herbicide, and 'Bt corn' that has a gene derived from Bacillus
thuringiensis that produces a toxin which kills insects.
Transgenic lines for high-yielding crops per se are not yet being developed,
because a large number of genes are thought to be responsible for yield, and
these genes have not yet been identified and isolated. If gene manipulation
will increase yield directly, this may result in the removal of larger amounts
of nutrients from the soil and perhaps increased fertilizer needs, if current
levels of inputs are not used more efficiently.
Nutrient management may be indirectly affected by GM transgenic crops if
they eliminate one or more yield limiting factors. With better weed and pest
control, crops are more likely to reach their yield potential and then could be
more responsive to fertilizers. So far, studies on the nutrient use efficiency of
transgenic crops are scarce. If GM crops use nutrients in the soil more
effectively, theoretically, this could decrease the need for fertilizer. The
specific requirements for fertilizer of GM crops have been scarcely studied,
and the impact of biotechnology on plant nutrition and fertilizer use is yet to
be determined.
There are some examples of GM crops in which N and P biochemistry in the
plant has been altered. These include the 'GDH corn', in which a gene that
produces the enzyme NADP-dependent glutamate dehydrogenase has been
introduced from soil bacteria. In the plant, this enzyme causes increased N
assimilation and about a 10% increase in yield. Another example is a
transgenic Arabidopsis plant with modified expression of high-affinity nitrate
transporters. This may be a future transgenic approach to improve N use
efficiency in economical important crops. Regarding P, 'low-phytate corn' has
been obtained and yields well with smaller P inputs, accumulates P in
vegetative tissues, contains less P in grains but in a form suitable for non-
ruminant digestion (Lightfoot, 1999).
So far, there have been no direct or specific developments for commercially
engineering GM crops involving K. However, as far as balanced crop
nutrition is involved, modifications in N and P uptake and efficiency will
affect K inputs.
A future approach involving GM and K may use the HKT1 gene (high-
affinity K transporter), which is an important component of the high affinity
K uptake system in roots and has been isolated from wheat (Schachtman and
Schroeder, 1994). Transgenic wheat plants containing this gene were
produced in the lab. Potassium uptake by the plant was studied under K
deficient conditions (Laurie  et al., 1998). Transgenic plants with a modified
activity of the K transporter may have an altered K metabolism which could
lead to higher yields.
Another interesting challenge is the achievement of salt tolerant plants. There
is a substantial and increasing knowledge of the molecular biology and
molecular genetics that affect cell-based tolerance to salinity (Yeo, 1998).
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Some early results show that mutation of HKT1 in yeast strains carrying the
gene results in improved salt tolerance and an increase in internal K/Na ratios
indicating improved K selectivity under salt conditions (Rubio et al., 1995).
Yet the whole-plant response to salinity involves many regulatory processes
and multiple gene transfer, thus the practical technology for developing salt
tolerant crops through genetic manipulation is still unavailable (Yeo, 1998).
A possible impact of transgenic salt tolerant crops would be the ability to use
KCl under saline soil conditions.
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