Evaluation of soil fertility and partial nutrient balances for improved fertilizer recommendations under intensive agriculture in India

M.S. Brar and Dinesh K. Benbi Department of Soils Punjab Agricultural University Ludhiana

Changing scene of Indian agriculture

Parameters	1950-51	2007-08
Gross Area Under food Grains (million ha)	97.3	124.4
Gross Irrigated Area Under food Grains (million ha)	18.3	56.6
Per Capita Gross Sown Area (ha person ⁻¹)	0.34	0.16
Cropping Intensity (%)	112	135
Fertilizer consumption (million tones)	.07	23.02
Food Grain production (million tones)	50.8	230.7

- Trends in fertilizer use and crop response
- Soil fertility evaluation approaches
- Fertilizer recommendation philosophies
- Partial nutrient balances
- Balanced fertilization and FUE

Inefficient use of fertilizers is

- > Uneconomical
- > Unecological

Which may lead to:

- Environmental pollution
- Groundwater contamination
- Soil health problems

Soil fertility evaluation

- 1. Soil testing
- 2. Plant analysis

1) Soil testing

- To estimate the nutrient-supplying power of a soil by biological or chemical methods
- Soils classified into low, medium and high

2) Plant Analysis

- Valuable supplement to soil testing.
- Useful in confirming nutrient deficiencies, toxicities or imbalances

Limitations:

- Does not consider nutrient balances and interactions
- Requires different critical values for different tissue ages

Soil Test Interpretation and Fertilizer Recommendations Approaches

- > Generalized Fertilizer recommendation (GRD)
- Soil Test based fertilizer recommendation (STRD)
- > Critical Value or sufficiency approach
- > Fertilizer recommendation for targeted yields
- > Build-up and maintenance concept
- > Response surfaces and mechanistic modeling

Generalized or state level blanket fertilizer recommendation

- It is most commonly advocated and followed method
- Ideally suited to soils of medium fertility

Limitations:

- Due to variation in soil fertility it does not ensure economy and efficiency of applied fertilizer
- Wastage in high fertility and sub-optimal use in low fertility soils

de at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, In Histlion, Quality and Reduced Environmental Person

Soil Test Based fertilizer recommendations

Fertilizer recommendation is based on soil which is considered as medium.

Fertilizer dose

- / increase by 25% for **low soils**
- decreased by 25% for high soils

Limitations

- Same dose for extremely low and moderately low soil
- Same dose for extremely high and moderately high soils
- Only single nutrient is considered
- Interaction with other nutrients and soil properties are ignored

anagement for Food Production, Quality and Reduced Environmental Dar

Critical limits of available K in soils for different crops and soils

Сгор	Soils Type	Critical Limit (mg kg ⁻¹)	
Rice	Medium Black	100	
	Red	75	
	Alluvial	190	
	Laterite	80	
Wheat	Alluvial	100	
	Calcarious	60	
Sorghum	Vertisol	335	
	Based on data from differer	nt regions of India	

Relationship between exchangeable and water soluble K

Soil	Relationship	Solution K (mg Kg ⁻¹)	Exch. K (mg Kg ⁻¹)
Illitic	Y=2.59 + 0.286X	12.0	33
Smectitic	Y=5.14 + 0.023X	12.0	300

Y = Solution K ; X = Exchangeable K

Target yield concept

It not only prescribes the optimum dose of nutrient but also predicts the level of yield that a farmer can expect

Fertilizer dose is obtained by computing three basic parameters:

- NR- nutrient requirement per unit of economic yield
- CS- contribution from soil available pool
- CF- fractional recovery of applied fertilizer nutrient

Limitations:

- Problems in estimating contribution of nutrient from soil available pool (CS)
- CS is influenced by soil type, texture, rooting depth and nutrient release characteristics of the soil
- Heavily biased towards high fertility of native and applied nutrients
- Difficult to estimate the contribution of nonexchangeable K towards plant uptake

Total K loss from Punjab soils

Description	Years						
	1960-61	1970-71	1980-81	1994-95	2006-07		
Addition thro' fertilizer (X10 ³ tonnes)	Nil	7	29	14	43		
Total K removal (X10 ³ tonnes)	159	305	495	820	825		
Net loss (X10 ³ tonnes)	159	299	466	806	782		
Loss (kg/ha/crop)	44	67	82	122	118		
This presentation was made at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubaneswar, Orissa, India. The Role and Benefits of Potassium in Improving Nutrient Management for Food Production, Quality and Reduced Environmental Damage.							

					E-K + NE- K	NE-K	nted
Control	803	0	-51	-597	-648	752	155
N100	1392	0	-72	-1110	-1182	1320	210
N100 P22	1766	0	-78	-1483	-1561	1689	205
N100 P22 K41	2323	1097	+6	-1101	-1095	1250	149

Annual K balance in long term rice-wheat cropping system at Ludhiana (India) during 1988- 2000

Balanced Fertilization and fertilizer Use Efficiency							
Crop	Soil type/ Location	N use efficiency (%)			P use efficiency (%)		
		N	NP	NPK	NP	NPK	
Maize	Inceptisol/ Ludhiana	16.7	23.5	36.4	10.3	21.4	
Wheat		32.0	50.6	63.1	20.6	30.7	
Maize	Alfisol/ Palampur	6.4	34.7	52.6	21.8	35.6	
Wheat		1.9	35.6	50.6	10.7	15.2	
is presentation was ma anagement for Food Pr	ade at the IPI-OUAT-IPNI Internati oduction, Quality and Reduced Er	onal Symposiun nvironmental Dai	n, 5-7 November : mage.	2009, OUAT, Bhubaneswar,	Orissa, India. The Role and Benefit	s of Potassium in Improving Nutrient	

Fertilizer N use efficiency could be improved if the fertilizer N rate is adjusted for the actual SOC concentration instead of fertility classes

Conclusions

- > The fertilizer consumption in India increased dramatically but the response has declined
- > While there is a wide-scale adoption of blanket fertilizer recommendation there is a need for site-specific nutrient management for balanced fertilization
- Need to monitor soil fertility and emerging nutrient deficiencies

de at the IPI-OUAT-IPNI International Symposium, 5-7 November 2009, OUAT, Bhubar duction, Quality and Reduced Environmental Daverge

- Soil test methods should be augmented with other chemical and biological fractions for better interpretations
- Fertilizer adjustment for K, needs to consider non-exchangeable K along with exchangeable or water soluble K
- Different critical levels for available K should be used for soils with different mineralogical composition

