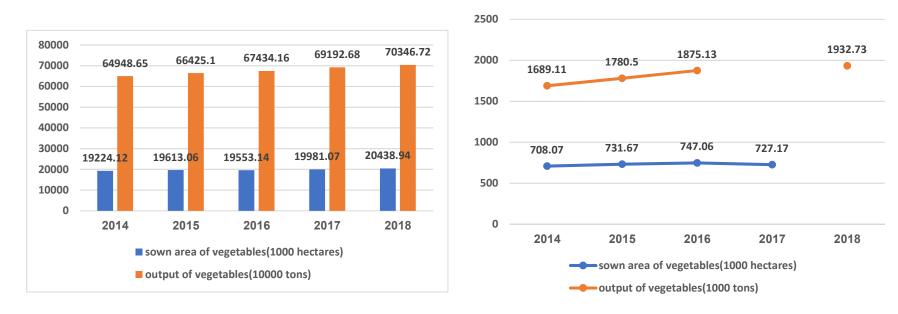


Effect on potassium on leafy vegetables


and efficient potassium application technology

Wanyi Zhao/Zhengyin Wang

Southwest University

Over the past five years, the planting area and yield of vegetables have been on the rise in China

The sown area and output of vegetables in China for latest 5 years

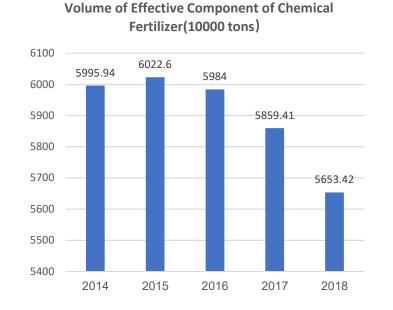
The sown area and output of vegetables in Chongqing for latest 5 years

National Bureau of Statistics, 2014-2018

Problems of chemical fertilizer application

1. Excessive fertilizer input and nutrient imbalance.

2. Unreasonable model of organic manure application combined with chemical fertilizers.


3. Improper medium trace element fertilization.

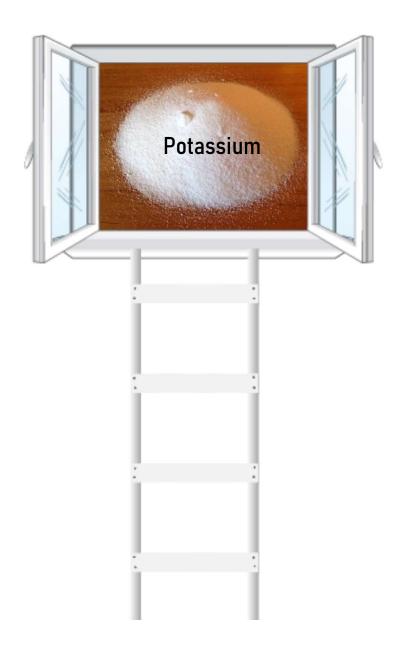
4. Special fertilizer types and the quantity are not balanced.

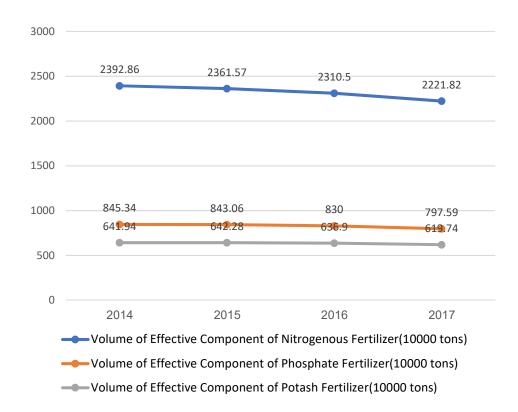
5. The quality of organic manure is uneven.

6. Improper fertilizer application method.

The amount of chemical fertilizer has continued to decline over the past five years, which is still much higher than the standard.

National Bureau of Statistics , 2014-2018


To explore accurate and scientific fertilization technical system


Five technical focal points (5R)

<mark>Right</mark>	<mark>Right</mark>	Right	Right	Right
Rate	Pattern	Source	Time	Place

Huang, Chinese Academy of Agricultural Sciences

Volume of Effective Component of Nitrogenous, Phosphate and Potash Fertilizer(10000 tons)

National Bureau of Statistics, 2014-2018

Element	Extremely low	Low	Middle	High
Ν	< 100	100~200	200~300	> 300
Р	< 30	30~60	60~90	> 90
K	< 80	80~160	160~240	>240
Ca	< 400	400~800	800~1200	>1200
Mg	< 60	60~120	120~180	> 180
S	< 400	40~80	80~120	> 120

Lu and Chen, 2009

The detection result of greenhouse vegetable soil samples from 2009-2014 in Shou guang

	200	19		2012			20	14
Crops	age of greenhouse/a	Available K/mg ·kg ⁻¹	Crops	age of greenhouse/a	Available K/mg ·kg-1	Crops	age of greenhouse/a	Available K/mg ·kg-1
Balsam pear	5	235	Tomato	5	559	Cucumber	6	2144
Cucumber	3	149	Tomato	3	478	Cucumber	9	594
Eggplant	4	134	Cucumber	9	705	Towel ground	3	556
Eggplant	7	181	Eggplant	7	482	Cucumber	5	1918
Cucumber	6	167	Tomato	6	574	Cucumber	4	1748
Melon	5	240	Cucumber	5	534	Tomato	5	809
Peper	4	290	Cucumber	6	433	Tomato	3	1433
Cucumber	5	364	Pepper	3	479	Pepper	5	863
Towel ground	3	148	Pepper	3	682	Eggplant	8	679
Tomato	3	134	Melon	5	702	Tomato	6	1080
			Melon Eggplant	5 7	534 490	Towel ground	3	2090

*Data summarized from soil fertilizer testing room, Weifang college of science and technology

		Available K (mg kg ⁻¹)			Recommended dosage of K ₂ O (kg hm ⁻		
Soil nutrient level	Relative yield (%)	Leafy vegetables	Gourd vegetables	Leguminous vegetables	Leafy vegetables	Gourd vegetables	Leguminous vegetables
Extremely low	50-70	1-8.5	7-35	8-30	165-235	220-305	185-260
Low	70-80	8.5-27	35-70	30-65	130-165	185-220	145-185
Middle	80-90	27-85	70-160	65-135	95-130	140-185	105-145
High	90-95	85-150	160-235	135-195	75-95	120-140	80-105
Extremely high	>95	>150	>235	>195	<75	<120	<80

technical index of recommended potassium fertilization for the main vegetable crops

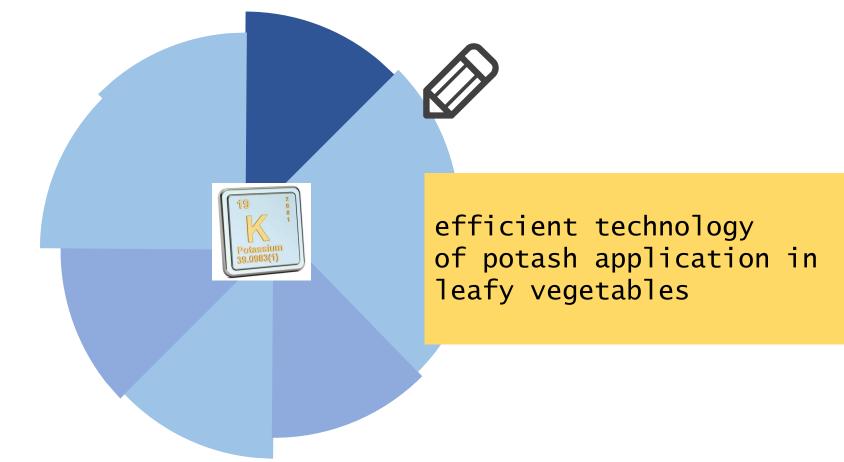
Wang, 2017

The volume of chemical fertilizer for vegetables in some parts of China (kg/ha)

Region	samp les	Ν	P ₂ O ₅	K ₂ O	Total
China	2810	300	210	180	690
Chongqing	268	375	300	270	945
Anhui	89	360	360	195	915
Gansu	114	435	450	90	975
Sichuan	139	180	60	45	285
Hebei	50	180	90	90	360
Shandong	1147	300	225	225	750
Guangdong	66	330	270	435	1035

* China Agricultural University: Research report on fertilizer development in China, 2013

Improper application of potassium fertilizer



а

b

Picture a and b show that excessive potassium fertilizer application causes blossom-end rot and yellow leaves in vegetables.

Field experiment

- 2008-2012, Study on leafy vegetables response to different potassium application method
- 2012, Effect of reduced K amount and split application in root zone of leafy vegetables

• 2013, Studies of chemical K replacement experiment on leafy

合川区

vegetables and demenstration

永川区
 〇36-037
 〇40-041
 南川区
 ○56-057
 〇66-067
 〇86-087
 〇48-049
 〇48-049
 〇48-049
 〇48-049
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇56-057
 〇57
 〇56-057
 〇57
 〇56-057
 〇57
 〇56-057
 〇57
 〇57
 〇57
 〇57
 〇57
 〇57
 〇57
 〇57
 〇57
 〇57
 〇57
 〇57
 〇57
 〇57
 〇57
 〇57

垫江县 065

梁平县 082-083

> 忠县 082-083

• 2014, Effect of slow release compound fertilizer on leafy vegetables

城口县 070-071

> 云阳县 080-081

开州区 072-073

> 万州区 042-043

石柱土家

族自治具

巫溪县 074-075

> 奉节县 078-079

巫山县 076-077

Scheme and dosage of fertilizers in field experiment (kg/hm^2)

Treatment	Ν	P ₂ O ₅	K ₂ 0	peat
KO	300	150	Ō	0
K1 (KCl)	300	150	75	0
K2 (KCl)	300	150	225	0
K3 (KCl)	300	150	450	0
K4 (K ₂ SO ₄)	300	150	75	0
K5 (K ₂ SO ₄)	300	150	225	0
K6 (K ₂ SO ₄)	300	150	450	0
K7 (K_2SO_4 +peat)	300	150	225	2250

Study on leafy vegetables

response to different potassium fertilizer

Treatment of the highest increasing rate

10.7%~29.7%

Lettuce	K3(KCl)	Ν	P_2O_5	K ₂ O
	(kg/hm²)	300	150	450

4.32%~14.6%

Cabbage	K7(K ₂ SO ₄ +peat)	Ν	P_2O_5	K ₂ O	Peat
- and ange	(kg/hm ²)	300	150	225	2250

 $4.32\% \sim 14.6\%$

Romaine	K7(K ₂ SO ₄ +peat)	Ν	P_2O_5	K ₂ O	Peat
	(kg/hm ²)	300	150	225	2250

(1) No matter applied the KCl or K_2SO_4 , 450 kg/hm² of K_2O is reommended. Furthermore, the increasing effect of KCl is better.

(2) When applied 225 kg/hm² of K₂O, the yields of cabbage and romaine both up to the highest, the combination of organic fertilizer with chemical fertilizer could improve yield of vegetables.

③For romaine and cabbage, the efficient of increasing yield of KCl and K₂SO₄ have no significant difference. Considerting the price of market, KCl is more recommended.

Serial number	Treatments	Code	Base fertilizer(%)	Rosette stage(%)	Heading stage(%)
1	No potash	K0	0	0	0
2	Conventional KCl	K1-1	100	0	0
3	Installment KCl	K1-2	50	50	0
4	Installment KCl	K1-3	50	0	50
5	Installment KCl	K1-4	0	50	50
6	Conventional K ₂ SO ₄	K2-1	100	0	0
7	Installment K ₂ SO ₄	K2-2	50	50	0
8	Installment K ₂ SO ₄	K2-3	50	0	50
9	Installment K ₂ SO ₄	K2-4	0	50	50

The test scheme of potassium fertilizer application

Study on leafy vegetables

response to different potassium application method

The first season

The second season

Split application > Basal applicaiton

	Serial numbe r	Treatments	Code	Base fertilizer(%)	rosette stage(%)	heading stage(%)	
	1	No potash	K0	0	0	0	
	2	Conventional KCl	K1-1	100	0	0	
	3	Installment KCl	K1-2	50	50	0	
Lettuce	4	Installment KCl	K1-3	50	0	50	15.4%
_	5	Installment KCl	K1-4	0	50	50	
	6	Conventional K ₂ SO ₄	K2-1	100	0	0	
	7	Installment K_2SO_4	K2-2	50	50	0	
	8	Installment K_2SO_4	K2-3	50	0	50	
Chinese cabbge	9	Installment K ₂ SO ₄	K2-4	0	50	50) 15.1%

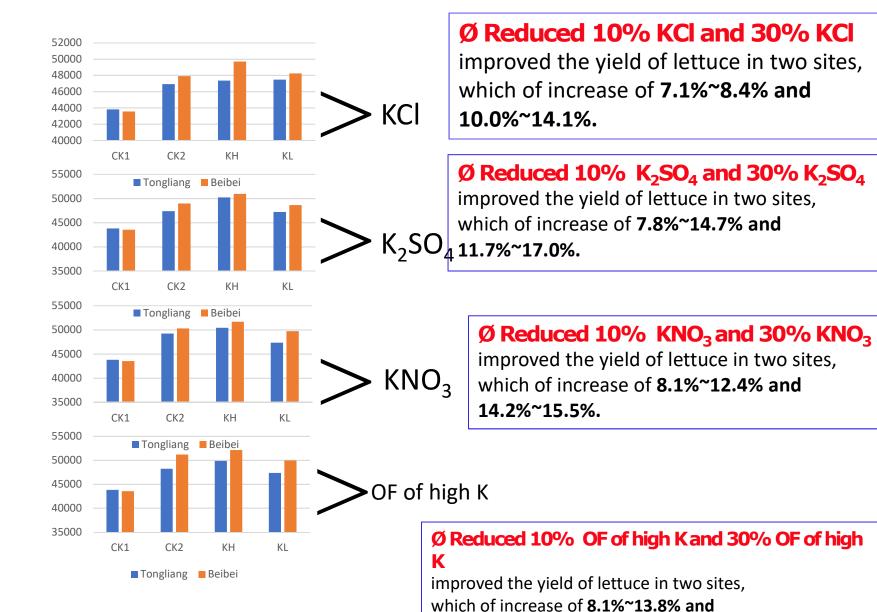
Study on leafy vegetables

response to different potassium application method

The preference K fertilizer of lettuce: KCl	Prophase	
The preference K fertilizer of Chinese cabbage: K₂SO₄	Late stage	

Lettuce	Base fertilizer(%)	Rosette stage(%)	Heading stage(%)
	50	0	50
Chinese cabbage	0	50	50

Code	Treatment	fertilizer proportion	K ₂ O	Base fertilizer(%)	rosette stage(%)	heading stage(%)	vigorous growth stage(%)
CK ₁	No potash	0	0	0	0	0	0
CK ₂	Conventional potash	100%	150	100%	0	0	0
K _H	Reduced 10% potash and split application in root zone	90%	135	0	30%	30%	30%
K _L	Reduced 30% potash and split application in root zone	70%	105	0	23%	23%	24%


Scheme and dosage of fertilizers in field experiment (kg/hm²)

Effect of reduced K amount and split application in

root zone of leafy vegetables

KCl K₂SO₄ KNO₃ Organic fertilizer of high potassium

14.7%~19.7%.

Effect of Organic fertilizer K replacing chemical potash fertilizer on leafy vegetables

Code	Treatment	K_2O (OF) (kg/hm ²)	K_2O (CF) (kg/hm ²)
CK1	No potash	0	0
CK ₂	Conventional potash	0	150
$M_L + K_H$	10% A-K+90% O-K	15	135
M _M +K _M	30% A-K+70% O-K	45	105
M_{H} + K_{L}	50% A-K+50% O-K	75	75
CK ₁	No potash	0	0
CK ₂	Conventional potash	0	150
$M_L + K_H$	10% B-K+90% O-K	15	135
$M_M + K_M$	30% B-K+70% O-K	45	105
$M_{\rm H}$ + $K_{\rm L}$	50% B-K+50% O-K	75	75
CK ₁	No potash	0	0
CK ₂	Conventional potash	0	150
$M_L + K_H$	10% C-K+90% O-K	15	135
$M_M + K_M$	30% C-K+70% O-K	45	105
$M_{\rm H}$ + $K_{\rm L}$	50% C-K+50% O-K	75	75

A: Maize straw

B: organic fertilizer of high K

C: Commercial organic fertilizer

0: Chemical fertilizer

The inceasing rate		Recommened treatment	Maize straw
Jiulongpo 11.4%~13.7%	Tongliang 11.4%~15.3%	M ₅₀ +K ₅₀	30000 20000 10000 0 CK1 CK2 M10+K90 M30+K70 M50+K50
			Jiulongpo Tongliang
The incea	ising rate	Recommened treatment	40000 Organic fertilizer of high K
Jiulongpo	Tongliang	M IV	20000
11.4%~13.9%	11.4%~16.3%	M ₅₀ +K ₅₀	CK1 CK2 M10+K90 M30+K70 M50+K50
			Jiulongpo 📕 Tongliang
The inceasing rate		Recommened treatment	60000 40000
Lettuce	Chinese cabbge	M ₅₀ +K ₅₀	20000 0 0 CK1 CK2 M10+K90 M30+K70 M50+K50
11.6%~17.4%	10.9%~15.4%		Lettuce Chinese cabbage

50% maize straw K+50% chemical fertilizer K is recommened for lettuce planted.

Demonstration

Demonstration

Demonstration of K reduction and split application in root zone

Treatments	Content of available K in soil (mg/kg)
KCI reduction of 10%	131
KCI reduction of 30%	165
K ₂ SO ₄ reduction of 30%	118
KNO ₃ reduction of 30%	211
	402

Demonstration

Demonstration test Address: Tongnan & Beibei Vegetable: Lettuce

Content of available K in soil (mg/kg)	Treatment	Yield (kg/hm²)
	Conventional potash	36407
131	KCl reduction of 10%	38047
	KCl reduction of 30%	37130
	Conventional potash	31149
165	KCl reduction of 10%	32461
	KCl reduction of 30%	31860

Ø KCl reduction of 10%~30% and split application in root zone can be applied in lettuce practically.

Demonstration test Address: Tongliang、Beibei Vegetable: Cabbge、Lettuce

Vegetables	Content of available K in soil (mg/kg)	Treatment	Yield (kg/hm²)
	118	Conventional potash	35445
Lettuce		KNO ₃ reduction of 30%	35999
Cabbana	165	Conventional potash	91220
Cabbage		KNO ₃ reduction of 30%	95445

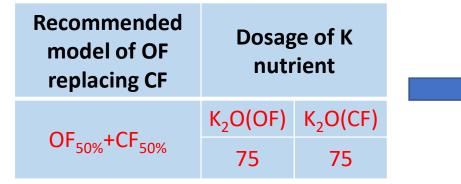
 \emptyset The increasing yield efficient of KNO₃ reduction in cabbage is better.

ØWithin KNO₃ reduction of 30%, the yield of vegetables varies unobviously.

 \emptyset KNO₃ is suitable for top dreassing

invegetable production.

Demonstration test Address: Tongnan、Tongliang、Beibei Vegetable: Chinese cabbage、Cabbage、Lettuce


Vegetables	Content of available K in soil (mg/kg)	Treatment	Yield (kg/hm²)
	165	Conventional potash	91220
Cabbage		K ₂ SO ₄ reduction of 30%	96975
Lettuce	211	Conventional potash	34755
		K ₂ SO ₄ reduction of 30%	34245
Chinese cabbge	402	Conventional potash	78570
		K ₂ SO ₄ reduction of 50%	83430
		K ₂ SO ₄ reduction of 100%	80370

Ø In the high K nutrient of vegetable planted soil, we should significantly reduce potassium application, even not apply potash.

Demonstration

Demonstration

Demonstration of organic fertilizer replacing chemical fertilizer

The selected fertilization program is recommoned on the cultivation of leafy vegetable in Chongqing

> **OF:** Oraganic fertilizer **CF:** Chemicl fertilizer

Thank you