

Effect of biochar application to soil potassium availability

Fang Chen, Zhiguo Li

Wuhan Botanical Garden, CAS 2019-11-7, Kuenming

Instruction

Biochar has become a research hotspot in agriculture, ecology, environment, energy and other fields.

Biochar has little effect on soil nutrient . Excessive application will reduce crop yields, possibly due to its higher pH. (SP Sohi,2010; M Laghari ;2016)

Objectives

Potassium is deficiency in most farmland in China, limiting crop production (He et al., 2015). Therefore,

- to investigate the effects of biochar application on soil K dynamics and crop responses in different soil types,
- to study the influences of biochar application on soil microbial activity, especially the development of K-dissolving bacteria

Materials

Properties of biochar

Chemical properties	Values
EC (dS m ⁻¹)	2.26
рН	9.07
Total organic carbon (g kg ⁻¹)	487.6
Total N (g kg ⁻¹)	13.56
Total P (g kg ⁻¹)	9.17
Total K (g kg ⁻¹)	21.35
CEC (cmole ₊ kg ⁻¹)	57.12

Note: Produced by pyrolyzing at 450 C.

Materials

Alfisol

Entisol

Properties of soil

Soil type	рН	OM ^a (g kg ⁻¹)	CEC (cmol kg ⁻¹)	Sand (%)	Silt (%)	Clay (%)	Alkali-N (mg kg ⁻¹)	Olsen-P (mg kg ⁻¹)	Sol-K ^a (mg kg ⁻¹)	Ex-K ^a (mg kg ⁻¹)	Nonex-K ^a (mg kg ⁻¹⁾	Main K-bearing minerals
Alfisol	5.71	15.77	32.5	27.4	51.4	21.2	87.3	25.6	54.43	161.17	512.51	l ^a (10%), F ^a (3%)
Entisol	7.81	13.74	18.5	39.2	48.3	12.5	72.1	15.8	19.39	107.72	525.07	l (22%), F (5%)

^aOM, organic matter; Sol-K, water-soluble K; Ex-K, exchangeable K; Nonex-K, nonexchangeable K; I, illite; F, feldspar.

Biochar effects on crop K uptake

Figure 1: Biochar effects on crop K uptake. Error bars represent standard deviations. Different letters indicate significant differences in mean values between soils and biochar treatments, P < 5%, Tukey test. ANOVA results are also given: "**P < 0.1%, "*P < 1%, *P < 5%.

- Plant K uptake increased with the biochar application rates.
- The response differed between soil type and crop period.
- In wheat periods, plant K uptake from the Alfisol was higher than from the Entisol, due to higher basic fertility in the Alfisol than Entisol.
- In maize period, crop K uptake from the Entisol was higher than that form Alfisol.

- Biochar increased soil soluble K and exchangeable K, and the effect for Alfisol was higher than Entisol, due to its higher cation exchange capacity (CEC).
- In the Entisol, the Nonex-K that was fixed during the wheat period, which prolongs its release and support maize growth.

Biochar effects on soil microbes

microbial abundance in two soils at the end of the maize period. Error bars represent standard deviations. Different letters indicate significant differences in mean values between soils and biochar treatments, P < 5%, Tukey test. ANOVA results are also given: *** P < 0.1%, **P < 1%, *P < 5%; ns, not significant.

Alfisol

Entisol

B5 B10 B25 B5 B10 B25 B0 B5 B10 B25 Biochar increased the total bacteria and K-solubling bacteria number, ٠ and the effect of alfisol on total bacteria number was great than the ultisol, but for K-solubling was inverse.

Biochar effects on mineral K release and the relation with KDB

Figure 6: Biochar effects on soil mineral K release (left) after harvest and the relationship with abundance of K-dissolving bacteria (right). Error bars represent standard deviations. Different letters indicate significant differences between soils and biochar treatments, P < 5%, Tukey test. ANOVA results were also given: ***P < 0.1%, *P < 5%. Linear regression was performed to check the relationship between mineral K release and K-dissolving bacteria number, *P < 5%.

Min-K release in the Entisol was significantly enhanced with biochar application, but not for alfisol.

Conclusion

- Biochar has great potential for increasing crop K uptake through the enhancement of soil K availability.
- Soil type affects the effect of biochar on soil K dynamics, Entisol is good for K fixation and release processes, and prolongs the effects of biochar on crop K uptake.
- Biochar addition could enhance the growth of Kdissolving bacteria and thus promote mineral K release in the soil.

- Biochar enhance the Min-K release, but the abundance of KDB were much lower when compared to previous studies applying KDB, K-bearing minerals, or together (Sheng, 2005; Rahimzadeh et al., 2015).
- Therefore, co-application of biochar with KDB may be a good practice to ensure KDB colonization and to maximize the effects on soil K availability.

Thanks!

