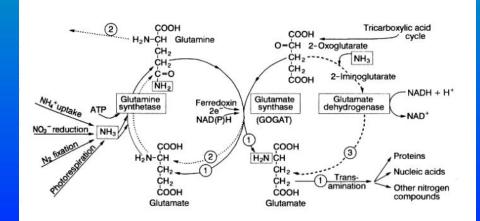
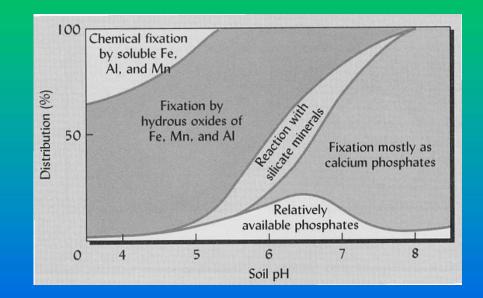

Balanced Potassium Nutrition for Plant Disease Management


L. Datnoff, A. Prabhu and N. Fageria

University of Florida-IFAS National Rice and Bean Research Center


Mineral Nutrition

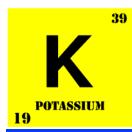
- Enzyme activators
- Structural components
- Metabolic regulators
- Substrates

Availability to the Plant

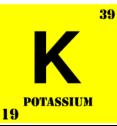
- Soil texture
- pH
- Moisture
- Temperature
- Mineral solubility
- Soil retention
- Soil microbial activity
- Ability of the plant to use nutrients efficiently

Nutritional Status of the Plant

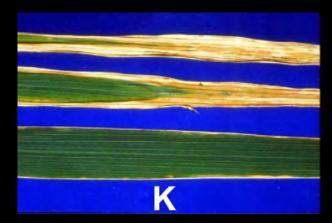
- Inherent disease resistance
- Altered pathogenesis

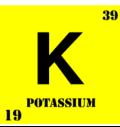

Ability of the pathogen to survive

Nutrient Host Relationships



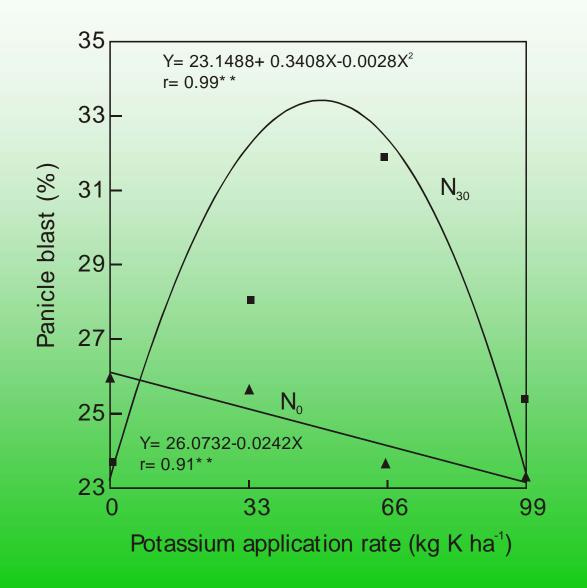
• Potassium / rice

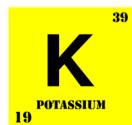

Sufficient K Concentrations (mg K/g DM)


Rice before anthesis	Wheat	
20-30	35-55	

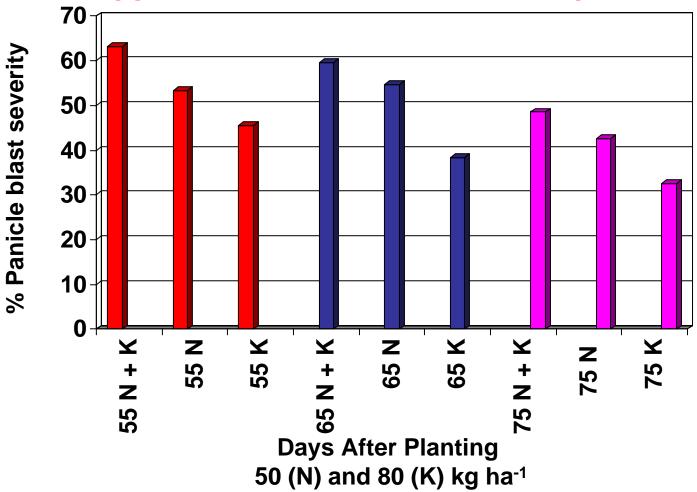
Essential Roles of K in Plant Nutrition

- Increases root growth
- Improves water and nutrient uptake
- Builds cellulose and reduces lodging
- Enhances and regulates 60 different enzymes
- Reduces respiration to prevent energy loss
- Aids in photosynthesis
- Helps translocation of sugars and starch
- Increases protein content
- Maintain turgor
- Reduces water loss and wilting
- Helps suppress plant diseases

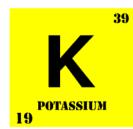

Effect of K on plant disease development

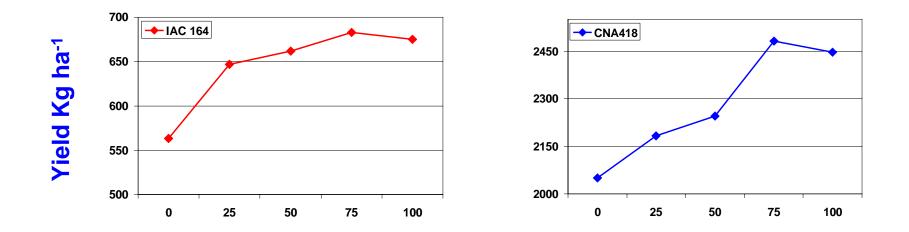

Group of Disease	Number of articles showing the effect of potassium on disease ¹				
	Decreased	Increased	No effect	Total	
Fungal	89	33	8	130	
Bacterial	19	5	*	24	
Viruses	9	5	3	17	
Nematodes	3	6	1	10	

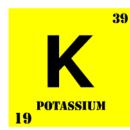
¹ Data compiled from Huber & Arny (1985) with additional articles.


* Data not available

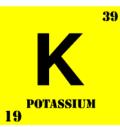
Effect of potassium fertilization on panicle blast at two nitrogen (N) levels in upland rice ($N_0 = A$; $N_{30} = \blacksquare$). The regression equations were calculated using fertilizer application rates expressed as K_2O .



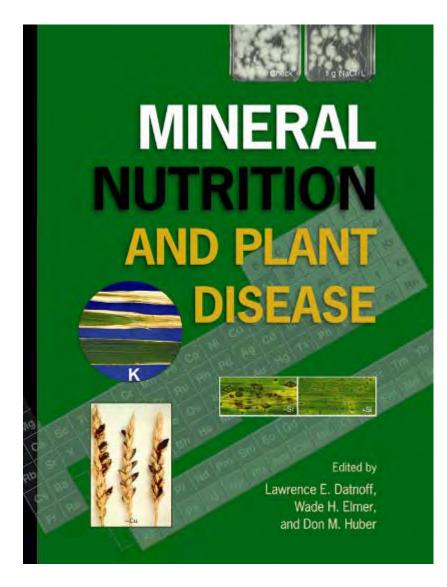

Panicle blast severity in relation to application time of N and K in upland rice


Prabhu and Silva, 2004

Grain yield of susceptible and resistant rice cultivars to blast in relation to applied potassium



K₂0 Kg ha⁻¹


How K suppresses plant disease

- Alterations in protein or amino acids
- Decreased cell permeability
- Decreased susceptibility of tissue to maceration and penetration

Conclusions

- Potassium is important for plant health especially when the plant is low or deficient and/or under some adverse environmental stress
- Large gaps still exist in understanding its ratio to other key elements in plant tissue
- More research is needed to understand adequate rates and application times for this element to improve plant utilization and subsequently plant production and health

www.shopapspress.org

Toll-Free 1.800.328.7560

In the USA and most of Canada

1.651.454.7250

elsewhere

