

Potassium deficiency constraints in common bean (*Phaseolus vulgaris* L.) production in West Usambara, Northern Tanzania

F.P. Baijukya and A.M. Mzanda

International Institute of Tropical Agricultre (IITA)

Presented at 1st National Potash Symposium, Protea Hotel, Dar es Salaam

N2Africa

- Science based research in development project
- Focus: "putting Nitrogen fixation to work for smallholder farmers growing legume crops in Africa"
- $(G_L \times G_R) \times E \times M$
- Focus crops (Common bean,

Groundnuts, soybean, cowpea)

- Yields of above legumes far below potential
- Major constraints: <u>poor soil fertility</u>, drought, pest and diseases, low quality inputs

Assessing nutrient deficiencies and soil fertility constraints for production of common bean (*Phaseolus* vulgaris L.)

- Identify major limiting nutrients and rank them according to the degree of limitation
- Assess the effect of fertiliser and inoculation on nodulation and yield

Methodology: Field selection

Experimental field trials at nine locations

Field characteristics of nine selected experimental sites in Lushoto region, West-Usambara Mountains, Tanzania.

Location	Altitude (m)	Slope (%)	Position on the hill		
Mabughai	1667	0-5	Foot slope		
Jaegerstal	1415	0	Foot slope - valley bottom		
Lushoto	1444	0	Uphill slope		
Kikurunge	1340	25-30	Uphill slope		
Mshizii	1256	10-15	Foot slope - valley bottom		
Kwemsanga	1253	20-25	Slope		
Ngulwi	1423	10-15	Slope		
Mbuzii I	1218	5-10	Foot slope		
Mbuzii II	1286	10-15	Uphill slope		

- Soil sampling
- Chemical and physical soil analysis
- MPN counts: Most Probable Number of rhizobia cells
 Indication of indigenous rhizobia population size

Methodology: Experimental trial design

- Treatment factors and Levels:
 - P Phosphorus fertilizer (26 kg P ha⁻¹)
 - **K** Potassium fertilizer (25 kg K ha⁻¹)
 - **Inoc** Rhizobia inoculation (Rhizobia inoculan, strain CIAT 899 from Legumefix UK)
 - N Nitrogen fertilizer (25 kg N ha⁻¹)

Treatments

- 1: control
- 2: control
- 3: K
- 4: P
- 5: Inoc
- 6: K + P
- 7: K + Inoc
- 8: P + Inoc
- 9: K + P + Inoc
- 10: K + P + N

Methodology: Trial measurements

- Precipitation (rain gauges at each site)
- Crop vigour observation
- Nodulation assessment
- Harvest measurements

Leaf analysis

- Leaf sampling at 50% flowering from
 - Experimental plots
 - Farmer fields (50 fields)
- Leaves washed, dried and grinded prior to analysis
- ICP-OES and CHN elemental analysis done at KU-Leuven (Belgium)
- Result of leaf nutrient concentrations of; N, P, K, Ca, Mg, Mn, Cu and Zn
- Compared with critical nutrient levels from literature

Results

Crop vigour score

Results – Crop vigour

Field 7 - Ngulwi 25-12-2013

Results- Nodulation

Results - grain yield

Results: Soil analysis

- Rhizobia populations between 1.2×10^2 to 2.4×10^5 cells/gram soil
- Soil particle size: clay texture

						Exc				
	рН	Org C	Total N	Av. P	CEC	Са	Mg	К	Na	EC
Fields		%C	%N	mg/kg		mS/cm				
#1 Mabughai	5.3	2.6	0.3	16.3	17.6	3.9	0.8	0.1	0.2	1.1
#2 Jeagertal	5.6	2.4	0.3	34.6	21.7	5.6	1.4	0.3	0.2	2.7
#3 Lushoto	5.2	2.5	0.3	37.8	12.5	2.4	0.7	0.2	0.2	1.2
#4 Kikurunge	6.9	2.3	0.2	25.7	24.2	8.0	3.1	0.1	0.3	0.3
#5 Mshizii	6.6	2.0	0.1	47.9	15.7	5.0	1.8	0.3	0.3	0.7
#6 Kwemsanga	6.4	1.4	0.1	55.2	16.8	5.4	1.6	0.2	0.2	0.2
#7 Ngulwi	6.0	2.5	0.2	46.2	16.7	5.2	1.3	0.2	0.2	0.7
#8 Mbuzii 1	6.1	2.0	0.2	45.3	21.5	6.3	2.2	0.2	0.3	0.8
#9 Mbuzii 2	6.1	2.4	0.2	35.9	18.7	5.4	2.0	0.3	0.3	1.2

Soil chemical properties of the experimental fields.

Relation between P and K concentration and fertilizer effect

Results – leaf nutrient concentration

DRIS

Discussion & conclusion

- Leaf nutrient concentrations and DRIS both indicated deficiencies for the nutrients K, P and partially N
- P and K fertiliser application is able to compensate, but...
- ... Overriding yield limiting factors played a major role at some experimental sites:
 - Inadequate rainfall > P and K uptake
 - Root rot
- Effect of Rhizobia inoculation depended on P and K application
- DRIS can best be seen as a supplement to sufficiency nutrient range diagnosis

Discussion & conclusion

- Soil deficiency in P and K
 - Soil chemical analysis P not deficient
 - Fertilizer trails P and K deficient
 - In accordance with previous research
 - At some fields other constraints played a major role
 - Management: farmers do not use inputs on beans
- Biological nitrogen fixation
 - Inoculation slightly increases yield
 - Rhizobia populations present in the soil but inoculation may be needed
 - No N deficiency in the soil
 - Nodulation constrained by P and K deficiency

- Farmers in Lushoto for hosting the experiments
- BMGF for funding the research through N2Africa project
- Organisers of the symposium for the invitation

