STATUS OF EXCHANGEABLE POTASIUM IN SOILS OF SELECTED LANDSCAPES OF SOUTHERN HIGHLANDS OF TANZANIA

Ngailo, J.A; F.C Mlowe; W.N.Mmari; Z.J.U.Malley

Uyole Agricultural Research Institute P.O.Box 400 Mbeya, Tanzania

First Potash Symposium in Tanzania DSM July 2015

INTRODUCTION

- *Potassium is a major constituent of the earth crust*
- igneous rocks contain more potash than the sedimentary rocks.
- Potassium comprise on an average of 2.6 % of the earth crust,
- It is the seventh most abundant element and fourth most

abundant mineral nutrient in the lithosphere.

First Potash Symposium in Tanzania DSM July

Intro. Cont'd

- ✓ In SH K studies date back to 1980s but do not present a correct picture of the situation for now
- ✓ Recent data are from field studies carried out by Malley, (2007), Mmari et al., (2010); Ngailo et al 2010; Ngailo et al., (2011) and Ngailo et, al (2013), Ngailo et al (2015). when conducting other studies.
- ✓ Nonetheless, there is still paucity of adequate information on levels potash in different soils of broad physiographic units

Intro. Cont'd

General objective

 To conduct survey on status of potash in landscapes of SH of Tanzania with different parent materials

Specific objectives:

- To identify some gray areas or gaps required to be addressed
- Provide justification for further organised research agenda on potash for maintaining sustainable crop production

Methodology

A two stage approach was used as follows:

- The Farming Systems map of SH at a scale 1:2,000,000 was carefully studied to find out the main physiographic units.
- These main physiographic units were taken as the basis of aggregating the various soil types and units
- Results of potash from analysed soils from the different soils were studied

		Resul	lts and	discu	ssion						
	Major soil	N	Minimum K	Maximum K	Average	interpretation					
	groups/types		levels Cmolc Kg ⁻¹	levels Cmolc Kg ⁻¹	exchangeable K levels Cmolc Kg ⁻¹						
	Mountains (Highlands)										
	Andisols	49	0.21	1.42	0.86	high					
	Ultisols and	46	0.10	1.62	0.89	high					
	Luvisols										
			Usangu p	lains (Lowlands)							
	Eutric	160	0.10	1.89	0.62	high					
	regosol,										
	Fluvisols or										
	gleyic										
	luvisols										
	Flood plains (Kyela)										
	Fluvisols	61	0.19	1.87	0.69	high					
İ	Lake plains(around lake Tanganyika and Nyasa)										
I	Eutric	45	0.32	1.06	0.66	high					
	regosol										
	Lake basins (lake Rukwa)										
	Fluvisols	45	0.19	1.87	0.70	high					
	Fluvisols	48	0.32	2.0	1.06	high					

Results and discussion cont'd

Correlation of potassium with cation exchange capacity, organic carbon, and clay

Forms of K	рН	CEC	OC	sand	clay
Exch-K	-0.548**	0.916**	0.919**	-0.916**	0.917**

First Potash Symposium in Tanzania DSM July 2015

Conclusion and recommendation

✓ The average levels of exchangeable K in soils of SH were relatively high variation minor do existed
✓ A positive correlation existed between other properties of soils including the fine particles of soils including clays

 ✓ We recommend that, although levels of K seem to be higher this does not mean they may not be suitable for every crop and therefore this might require continuous monitoring through soil site specific sampling and analysis

Acknowledgement

 Thanks to organisers and facilitators for inviting us to contribute to this symposium

 Colleagues in the SH for making data available for free

Thank you for your attention