Responses of Five Major Food Crops to Potassium Fertilisation and Establishment of Soil Critical Potassium Levels in Kenya

Esther Gikonyo¹, Stephen Kimani¹, Bernard Waruru¹, Lilian Mbuthia², Catherine Kibunja¹, Anthony Esilaba¹, Maurice Radiro¹, Michael Okoti¹

Introduction

- Misconception: Potassium is believed to be sufficient in Kenya Soils
- High K depletion reported
 - In SSA about 29 Kg ha⁻¹ yr⁻¹ (Stoorvgel and Smaling, 1990)
 - In Kisii about 70 Kg ha⁻¹ yr⁻¹ (Smaling et al., 1993)

Decline in Soil K over 30 years of continuous cropping under different manure rates

Decline in soil K over 30 years of continuous cropping under maize residue incorporation

Estimated average annual consumption of main fertilizers (1998-2002) in Kenya

Fertilizer name	Amount (MT)	% Share
DAP	90,963	28.2
MAP	19,465	6.0
25:5:5+5S	64,747	20.0
NPK(23:23:0)	17,536	5.4
CAN	46,816	14.5
Urea	25,369	7.9
Speciality	13,918	4.3
Others	44,187	13.7
Ministry of Geretilizers University - Ethio	ppian Agricultural mansformation Agency (ATA) joint	t symposium- The Role of Potassium in Balanced Fertilization

Introduction...

- Depletion resulting from continuous cropping leading to K mining to deficiency levels
- K deficiency observed in Western Kenya and parts of Central Kenya highlands
- Emerging importance of studies in crop responses to K and Soil Critical Potassium levels (SCKLs)

Objectives

- To evaluate the effects of K fertilizer application on five major food-crops in Kenya
- To establish crop specific SCKLs for the five food-crops.

Materials and Methods

- Source of data Fertilizer Use Recommendation Project (FURP)
- 70 site in 31 districts
- Soil characteristics
- Soil pH 4.0 7.7 but 21/30 with pH equal or less than 5.5
- Modified Olsen K 9/30 sites with K equal to or less than 0.2
- Organic carbon 23/30 with O. C equal to or less than 2.0%

FURP Experiments

Crops grown in 3 modules: ≻Module1- Maize monocrop in all sites ≻Module 2 – Maize /Legume intercrop ≻module 3 – area specific crops e.g Potato, Sorghum cabbages etc.

2 Experiments carried out : Expt. 1 – N x P factorial at 4 levels Expt.2 – N and P plus some site specific treatments such as K, lime, manure etc.

Materials and Methods...

5 crops studied were: Maize(36), Beans(28), Cabbage (15), Potato (17), Sorghum (10)

SCKLs were determined by the Cate-Nelson scatter plot method. Relative yield was determined by maximum yields at zero-K /Maximum yields at plus K

Materials and Methods...

 SCKLs were determined by superimposing a vertical and horizontal line on a scatter diagram so as to maximize the number of points in the positive quadrants (Lower left and upper right).

Results and Discussion

Summary of Crops, total no. of sites and Kresponsive sites and yield increment

Crop	No. of sites	No. sites with	Yield increment (
	in crop	sig. K response	ha-1)
		(pos./neg.)	
Maize	36	4 / 4	-1.02 - 1.13
Beans	28	2 / 2	-0.07 - 0.29
Potatoes	17	0 / 0	_
Cabbage	15	1 / 1	-2.7 –
			3.9
Sorghum	10	1 / 1	-0.25 - 0.45

IPI – Ministry of Agriculture – Hawassa University – Ethiopian Agricultural Transformation Agency (ATA) joint symposium - The Role of Potassium in Balanced Fertilization.

24-26 November 2015, Hawassa University, Hawassa, Ethiopia

Maize SCKL

Maize response to K at Kerugoya

IPI – Ministry of Agriculture – Hawassa University – Ethiopian Agricultural Transformation Agency (ATA) joint symposium - The Role of Potassium in Balanced Fertilization. 24-26 November 2015, Hawassa University, Hawassa, Ethiopia

IPI – Ministry of Agriculture – Hawassa University – Ethiopian Agricultural Transformation Agency (ATA) joint symposium - The Role of Potassium in Balanced Fertilization. 24-26 November 2015, Hawassa University, Hawassa, Ethiopia

Conclusions

Extraction Method Crop Specific Soil Critical K Level (cmol kg⁻¹) levels

	Maize	Sorghum Cab	bage Potato	Beans
Modified Olsen	0.18	0.20	0.20	0.18
Mehlich 1	0.22	0.23	0.24	0.20

Conclusions

• Mehlich K = 1.19 olsen K + 0.003

Responses to K were positive in some sites and negative in others

SCKLs established in this work requires refinement by using more K-deficient soils

Acknowledgements

- |P|
- GTZ
- GOK
- Director KARLO
- FURP Staff
- Farmers