IPI International Potash Institute
IPI International Potash Institute

Scientific abstracts

Metabolite Profiling and Gene Expression of Na/K Transporter Analyses Reveal Mechanisms of the Difference in Salt Tolerance between Barley and Rice
Liangbo Fu, Qiufang Shen, Liuhui Kuang, Jiahua Yu, Dezhi Wu, and Guoping Zhang
Published in:
Plant Physiology and Biochemistry 130:248-257 (2018), English


Barley (Hordeum vulgare) and rice (Oryza sativa) differ greatly in their salt tolerance, although both species belong to the Poaceae family. To understand the mechanisms in the difference of salt tolerance between the two species, the responses of ionome, metabolome and gene expression of Na and K transporters to the different salt treatments were analyzed using 4 barley and 4 rice genotypes differing in salt tolerance. In comparison with 4 rice genotypes, four barley genotypes showed better plant growth, lower shoot Na concentration and higher K concentration at the 9 day after salt treatments. There was a dramatic difference in absolute expression levels of SOS, HKT and NHX family genes between barley and rice, which might account for their difference in Na/K homeostasis and salt tolerance. Moreover, rice leaves accumulated excess Na under salt treatments, which caused serious damages to physiological metabolisms based on metabolomic analysis, but barley leaves had lower Na concentration and small changes in the most metabolites. These results provide useful insights into the molecular mechanism in the difference of salt tolerance between rice and barley.

Return to the Scientific abstracts

In your Language

Choose your Crop

Choose your App
IPI research e-ifc app for iPad and iPhone available now from the Apple App Store
IPI Research App for Android and Apple phones and tablets.

The Role of Potassium (K) in the Plant (in Urdu)
Potassium and Nitrogen Use Efficiency (NUE) in Urdu
Potassium in Soil and Plant Systems (in Urdu)
IPI profile infographic
Chloride - an essential nutrient
Potassium and Nitrogen Use Efficiency (NUE)
Managing Water and Fertilizer for Sustainable Agricultural Intensification - infographic
Potassium Improves your Crop Quality
Potassium Improves your Health
Potassium in Soil and Plant Systems
The Role of Potassium (K) in the Plant
What does a Plant Need to Live
Assessment of the Impact of Targeted Use of Fertilizer on Irrigated Rice in Asia
The Role of Potassium (K) in the Plant (in Urdu)

New publication