IPI International Potash Institute
IPI International Potash Institute

Scientific abstracts

Title:
Impact of Nutrient Supply on the Expression of Genetic Improvements of Cereals and Row Crops - A Case Study Using Data from a Long-Term Fertilization Experiment in Germany
Authors:
Rueda-Ayala, V., H.E. Ahrends, S. Siebert, T. Gaiser, H. Hüging, and F. Ewert
Published in:
Eur. J. Agron 96:34-46 (2018), English

Abstract:

Impacts of nutrient supply and different cultivars (genotypes) on actual yield levels have been studied before, but the long-term response of yield trends is hardly known. We present the effects of 24 different fertilizer treatments on long-term yield trends (1953-2009) of winter wheat, winter rye, sugar beet and potato, with improved cultivars changing gradually over time. Data was obtained from the crop rotation within the long-term fertilization experiment at Dikopshof, Germany. Yield trends were derived as the slope regression estimates between adjusted yield means and polynomials of the first year of cultivation of each tested cultivar, when tested for more than two years. A linear trend fitted best all data and crops. Yields in highly fertilized treatments increased linearly, exceeding 0.08 t ha−1 a−1 for both, winter wheat and winter rye, and ≥0.30 and ≥0.20 t ha−1 a−1 for sugar beet and potato fresh matter yields. Yield trends of winter cereals and sugar beet increased over time at N rates ≥40 kg ha−1 a−1, being 0.04-0.10 t ha−1 a−1 for cereals and 0.26-0.34 t ha−1 a−1 for sugar beet, although N rates >80 kg ha−1 a−1 produced a stronger effect. Nitrogen was the most influential nutrient for realisation of the genetic yield potential. Additional supply of P and K had an effect on yield trends for rye and sugar beet, when N fertilization was also sufficient; high K rates benefited potato yield trends. We highlight the importance of adequate nutrient supply for maintaining yield progress to actually achieve the crop genetic yield potentials. The explicit consideration of the interaction between crop fertilization and genetic progress on a long-term basis is critical for understanding past and projecting future yield trends. Long-term fertilization experiments provide a suitable data source for such studies.

Return to the Scientific abstracts

In your Language

Choose your Crop

Choose your App
IPI research e-ifc app for iPad and iPhone available now from the Apple App Store
IPI Research App for Android and Apple phones and tablets.

Infographics
The Role of Potassium (K) in the Plant (in Urdu)
Potassium and Nitrogen Use Efficiency (NUE) in Urdu
Potassium in Soil and Plant Systems (in Urdu)
IPI profile infographic
Chloride - an essential nutrient
Potassium and Nitrogen Use Efficiency (NUE)
Managing Water and Fertilizer for Sustainable Agricultural Intensification - infographic
Potassium Improves your Crop Quality
Potassium Improves your Health
Potassium in Soil and Plant Systems
The Role of Potassium (K) in the Plant
What does a Plant Need to Live
Assessment of the Impact of Targeted Use of Fertilizer on Irrigated Rice in Asia
The Role of Potassium (K) in the Plant (in Urdu)

New publication