IPI International Potash Institute
IPI International Potash Institute

Scientific abstracts

Potash Use in Aerobic Production System for Basmati Rice May Expand its Adaptability as an Alternative to Flooded Rice Production System
Wakeel, Abdul, Hafeez Ur Rehman, Muhammad Umair Mubarak, Abid Ilyas Dar, and Muhammad Farooq
Published in:
J. Soil Sci. Plant Nutr. 17(2):398-409 (2017), English


Direct seeded aerobic rice system has been developed and adopted as an alternative for medium-grain rice in many parts of the world, whereas efforts for aerobic basmati rice types are still in infancy. Among two major constraints for aerobic rice, weeds are progressively being eliminated to great extent through introduction of new herbicides; however, the issue of unfilled grains is still elusive. As potassium (K) deficiency produce sterile pollens in different crops, therefore possible K deficiency in aerobic rice production system may increase unfilled grains in rice. Therefore, it was hypothesized that K application may yield better by improving grain filling of basmati rice, especially, under aerobic conditions. Pot and field experiments were comprised of no K as control, K fertilization using 90 and 180 kg ha-1 keeping recommended N, P and Zn fertilization at the rate of 180, 125 and 25 kg ha-1. Two fine grain rice cultivars Basmati-515 and Super basmati were used due to their differential response to K fertilization. Results indicated that application of 180 kg K2O ha-1 significantly increased the K concentration in shoot, which increased the paddy yield. Highest chlorophyll contents were observed for Basmati-515 in aerobic rice and for Super basmati under flooded condition at 180 kg K2O ha-1. Decrease in number of un-filled grains may a contributory to paddy yield improvement in K fertilized treatments. The improvement in yield was more pronounced in Basmati-515 than Super basmati. Economic analysis showed higher benefit cost ratio for Basmati-515 with 90 kg K2O5 ha-1 under aerobic conditions. Net benefit of K fertilization was increased for both fertilizer rates and both cultivars except 180 kg K ha-1 in Super basmati. As K fertilization increased the number of filled grains and improved the rice yield, therefore it is suggested to apply K fertilizers for better yield and expanded adaptability of aerobic rice production system for basmati rice. Availability of indigenous soil K under aerobic and flooded conditions should be quantified to develop precise K recommendations for both production systems of basmati rice.

Return to the Scientific abstracts

In your Language

Choose your Crop

Choose your App
IPI research e-ifc app for iPad and iPhone available now from the Apple App Store
IPI Research App for Android and Apple phones and tablets.

The Role of Potassium (K) in the Plant (in Urdu)
Potassium and Nitrogen Use Efficiency (NUE) in Urdu
Potassium in Soil and Plant Systems (in Urdu)
IPI profile infographic
Chloride - an essential nutrient
Potassium and Nitrogen Use Efficiency (NUE)
Managing Water and Fertilizer for Sustainable Agricultural Intensification - infographic
Potassium Improves your Crop Quality
Potassium Improves your Health
Potassium in Soil and Plant Systems
The Role of Potassium (K) in the Plant
What does a Plant Need to Live
Assessment of the Impact of Targeted Use of Fertilizer on Irrigated Rice in Asia
The Role of Potassium (K) in the Plant (in Urdu)

New publication