IPI International Potash Institute
IPI International Potash Institute

Scientific abstracts

Title:
Comparison of Crop Productivity and Soil Microbial Activity among Different Fertilization Patterns in Red Upland and Paddy Soils
Authors:
Kai-lou, L., L. Ya-zhen, Z. Li-jun, C. Yan, H. Qing-hai, Y. Xi-chu, and L. Da-ming
Published in:
Acta Ecologica Sinica 2018, English

Abstract:

Soil enzyme activity and microorganism community can be changed through different long-term fertilization patterns. However, the effect of different fertilization practices on soil microorganisms might differ among crop systems. The objective of the study was to reveal the change of soil enzyme activity and soil microorganism community in different fertilizations both in upland and paddy soils. Therefore, based on long-term fertilization experiments in upland soil started in 1986 and adjacent paddy soil experiment commenced in 1981, with both consisting of 4 treatments: Control (no fertilization), N (only nitrogen fertilizer), NPK (nitrogen, phosphate and potassium fertilizers) and NPKM (nitrogen, phosphate and potassium fertilizers plus organic manure), grain yield, soil fertility, activities of soil urease, catalase, acid phosphatase, microorganism community (the number of bacteria, fungus and actinomycete) were analyzed. The result showed that: the highest grain yield was attained under the application of chemical fertilizers plus manure, as compared with Control, NPKM significantly increased the grain yield by 908.63% in corn and 118.80% in rice (p < 0.05). Meanwhile, NPKM treatment increased significantly soil organic matter and nutrient contents in upland and paddy soils. Interestingly, there was no significant difference in soil pH among all the treatments of paddy soil, but in upland, NPKM increased pH in comparison to Control by 23.06% (1.15 units of pH). Compared with Control, soil urease, catalase activities, bacteria and actinomycete numbers of NPKM were increased by 321.39%, 129.64%, 229.79%, 85.81% in upland soil, and 25.11%, 251.12%, 292.83%, 196.34% in paddy soil. However, in paddy soil, the soil acid phosphatase activity of Control, NPK and NPKM treatments were higher than upland soil by 34.87%, 44.81%, 52.73% and 30.11%. Then, the soil fungus and actinomycete numbers of paddy soil were lower than upland soil by 20.20% and 88.29%. Therefore, it indicated that long-term application of chemical and organic fertilizers delivered highest productivity in both experiment but the effect of fertilizer practices differed between land uses.

Return to the Scientific abstracts

In your Language

Choose your Crop

Choose your App
IPI research e-ifc app for iPad and iPhone available now from the Apple App Store
IPI Research App for Android and Apple phones and tablets.

Infographics
The Role of Potassium (K) in the Plant (in Urdu)
Potassium and Nitrogen Use Efficiency (NUE) in Urdu
Potassium in Soil and Plant Systems (in Urdu)
IPI profile infographic
Chloride - an essential nutrient
Potassium and Nitrogen Use Efficiency (NUE)
Managing Water and Fertilizer for Sustainable Agricultural Intensification - infographic
Potassium Improves your Crop Quality
Potassium Improves your Health
Potassium in Soil and Plant Systems
The Role of Potassium (K) in the Plant
What does a Plant Need to Live
Assessment of the Impact of Targeted Use of Fertilizer on Irrigated Rice in Asia
The Role of Potassium (K) in the Plant (in Urdu)

New publication