IPI International Potash Institute
IPI International Potash Institute

Scientific abstracts

Simulating the Effects of Different Potassium and Water Supply Regimes on Soil Water Content and Water Table Depth over a Rotation of a Tropical Eucalyptus grandis Plantation
Christina, M., G. le Maire, Y. Nouvellon, R. Vezy, B. Bordon, P. Battie-Laclau, J.L.M. Gonçalves, J.S. Delgado-Rojas, J.-P. Bouillet, and J.-P. Laclau
Published in:
Forest Ecology and Management 418:4-14 (2018), English


Although large amounts of potassium (K) are applied in tropical crops and planted forests, little is known about the interaction between K nutrition and water supply regimes on water resources in tropical regions. This interaction is a major issue because climate change is expected to increase the length of drought periods in many tropical regions and soil water availability in deep soil layers is likely to have a major influence on tree growth during dry periods in tropical planted forests. A process-based model (MAESPA) was parameterized in a throughfall exclusion experiment in Brazil to gain insight into the combined effects of K deficiency and rainfall reduction (37% throughfall exclusion) on the water used by the trees, soil water storage and water table fluctuations over the first 4.5 years after planting Eucalyptus grandis trees. A comparison of canopy transpiration in each plot with the values predicted for the same soil with the water content maintained at field capacity, made it possible to calculate a soil-driven tree water stress index for each treatment. Compared to K-fertilized trees with undisturbed rainfall (+K+W), canopy transpiration was 40% lower for K deficiency (−K+W), 20% lower for W deficit (+K−W) and 36% lower for combined K deficiency and W deficit (−K−W) on average. Water was withdrawn in deeper soil layers for −W than for +W, particularly over dry seasons. Under contrasted K availability, water withdrawal was more superficial for −K than for +K. Mean soil water content down to 18 m below surface (mbs) was 24% higher for −K+W than for +K+W from 2 years after planting (after canopy closure), while it was 24% lower for +K−W and 12% lower for −K−W than for +K+W. The soil-driven tree water stress index was 166% higher over the first 4.5 years after planting for −W than for +W, 76% lower for −K than for +K, and 14% lower for −K−W than for +K+W. Over the study period, deep seepage was higher by 371 mm yr−1 (+122%) for −K than for +K and lower by 200 mm yr−1 (−66%) for −W than for +W. Deep seepage was lower by 44% for −K−W than for +K+W. At the end of the study period, the model predicted a higher water table for −K (10 mbs for −K+W and 16 mbs for −K−W) than for +K (16 mbs for +K+W and 18 mbs for +K−W). Our study suggests that flexible fertilization regimes could contribute to adjusting the local trade-off between wood production and demand for soil water resources in planted forests.

Return to the Scientific abstracts

In your Language

Choose your Crop

Choose your App
IPI research e-ifc app for iPad and iPhone available now from the Apple App Store
IPI Research App for Android and Apple phones and tablets.

The Role of Potassium (K) in the Plant (in Urdu)
Potassium and Nitrogen Use Efficiency (NUE) in Urdu
Potassium in Soil and Plant Systems (in Urdu)
IPI profile infographic
Chloride - an essential nutrient
Potassium and Nitrogen Use Efficiency (NUE)
Managing Water and Fertilizer for Sustainable Agricultural Intensification - infographic
Potassium Improves your Crop Quality
Potassium Improves your Health
Potassium in Soil and Plant Systems
The Role of Potassium (K) in the Plant
What does a Plant Need to Live
Assessment of the Impact of Targeted Use of Fertilizer on Irrigated Rice in Asia
The Role of Potassium (K) in the Plant (in Urdu)

New publication