
Promotion of Potash in Rajasthan for Correcting the Imbalance

A joint initiative of International Potash Company (IPC), Moscow and Indian Potash Limited (IPL), New Delhi Agro Project of India, Belarus and Russia

Consumption kg/ha (2003-04)

Punjab 184.0 kg/ha

Rajasthan 40.5 kg/ha

India 89.8 kg/ha

Consumption ratio

Punjab 38.2:12.8:1

Rajasthan 48.6:14.3:1

India 6.6: 2.7:1

Wheat productivity (2002-03)

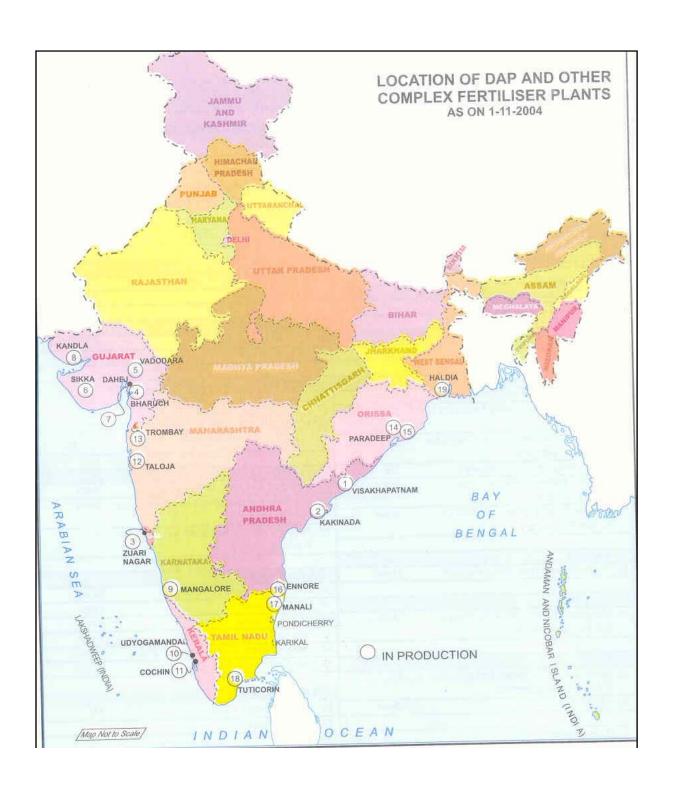
Punjab 4200 kg/ha

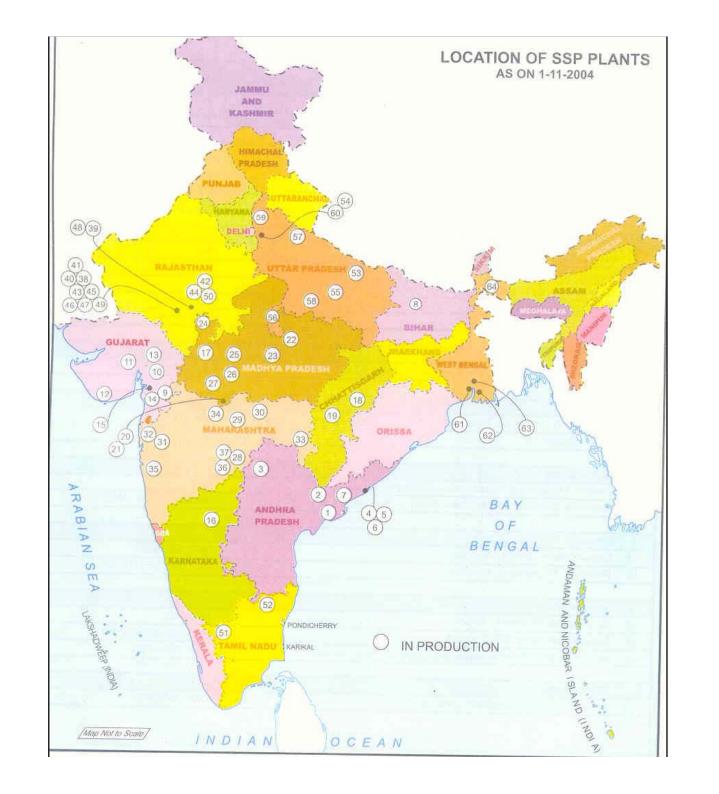
Rajasthan 2709 kg/ha

India 2618 kg/ha

Consumption of K remained insignificant and requires special focus.

Consumption of K2O in India (kg/ha)


Year	consumption	
1999-00	8.82	
2000-01	8.38	
2001-02	8.91	
2002-02	8.56	
2003-04	8.54	


Consumption of Potash in Rajasthan(000t)

Year	MOP	K2O
1999-00	7.6	6.33
2000-01	6.5	5.38
2001-02	9.7	6.85
2002-02	9.5	7.01
2003-04	10.6	10.62

Average K2O consumption in Rajasthan during 2003-04 was 0.6 kg/ha. Highest consumption was in Kota- 3.37 kg K2O /ha. MOP contributed about 60% of total Potash consumption.

All India District Ranking in Fertilizer Consumption (2003-04)

District	Rank	Nutri.Cons(t)	kg/ha
W. Godavari	1	196,758	332.9
Sriganganagar	56	71,717	70.0
Kota	103	52,355	125.0
Hanumangarh	110	50,783	42.8
Alwar	120	46,974	56.4
Baran	131	45,410	111.0
Jaipur	135	44,264	43.0
Chittorgarh	163	40,298	69.8
Bharatpur	171	38,331	64.6
S. Madhopur	198	34,438	89.2
Bundi	210	30,854	71.4

Productivity of Wheat in India (kg/ha)

State	1999-00	2000-01	2001-02	2002-03
Punjab	4696	4563	4532	4200
Haryana	4165	4106	4103	4053
U.P.	2764	2724	2755	2596
Rajasthan	2540	2405	2793	2709
M.P.	1823	1471	1642	1392
All India	2778	2708	2770	2747

Average Nutrient Removal in kg per ton of Yield for Major Crops under Field Conditions in India (* Dry fodder)

No.	Crop	Produce	kg / ton produce		
			N	P2 O5	K20
1	Rice	Paddy	20.1	11.2	30
2	Wheat	Grain	24.5	8.6	32.8
3	Sorghum	"	22	13.3	34
4	P. Millet	"	42.3	22.6	90.8
5	Maize	"	26.3	13.9	35.8
6	Chickpea	"	46.3	8.4	49.6
7	Pigeonpea	"	63.8	17.7	42.3
8	Groundnut	"	58.1	19.6	30.1
9	Soybean	"	66.8	17.7	44.4
10	Mustard	"	32.8	16.4	41.8
11	Linseed	"	19	12	33
12	Sunflower	"	56.8	25.9	105
13	Cotton	Seed	44.5	28.3	74.7
14	Sugarcane	Cane	1.7	0.2	2
15	Potato	Tuber	3.9	1.4	4.9
16	Cowpea	Fodder*	13.8	6.6	17.6
17	Maize	Fodder*	11.4	3.5	38.6

Nutrient Remova	al by some Frui	ts and Vo	egetable (Crops (kg/h
Crop	Yield (t/ha)	N	P205	K20
Apple	25	100	45	180
Banana	40	250	60	1000
Citrus	30	100	60	350
Grape	20	170	60	220
Mango	15	100	25	110
Papaya	50	90	25	130
Pineapple	50	185	55	350
Cabbage	70	370	85	480
Carrot	30	125	55	200
Cauliflower	50	250	100	350
Cucumber	40	70	50	120
Egg Plant	60	175	40	300
Okra (bhindi)	20	60	25	90
Onion & Garlic	35	120	50	160
Spinach	25	120	45	200
Tomato	50	140	65	190

Nutrient Balance of Potassium Under Rice – Wheat System in Punjab

Yield t/ha	7.0 + 4.3 = 11.3
K Removed (kg/ha)	144+81=225
K added (kg/ha)	0.0
Negative balance (kg/ha)	225
K from GW irrigation (kg/ha)) 46
Net negative balance (kg/ha)	176

Net negative balance of K in Maize –wheat system is 122 kg. Total K removal by field crops increased from 159,000t in 1961 to 709,000t in 2002.

(Brar M.S. 2004)

Apparent Balance of Nutrients in Soils of Rajasthan (000 t)

Nutrient	Addition	Removal	Balance
N	546.6	835	-288.3
P2O5	147.3	235.2	-87.9
K2O	7	1068	-1061.1
S	2.4	152.5	-150.1

Gupta (2001)

Potassium Fertility Status of Soils In Rajasthan

Location	Low	Medium	High
Rajasthan	26	52	22

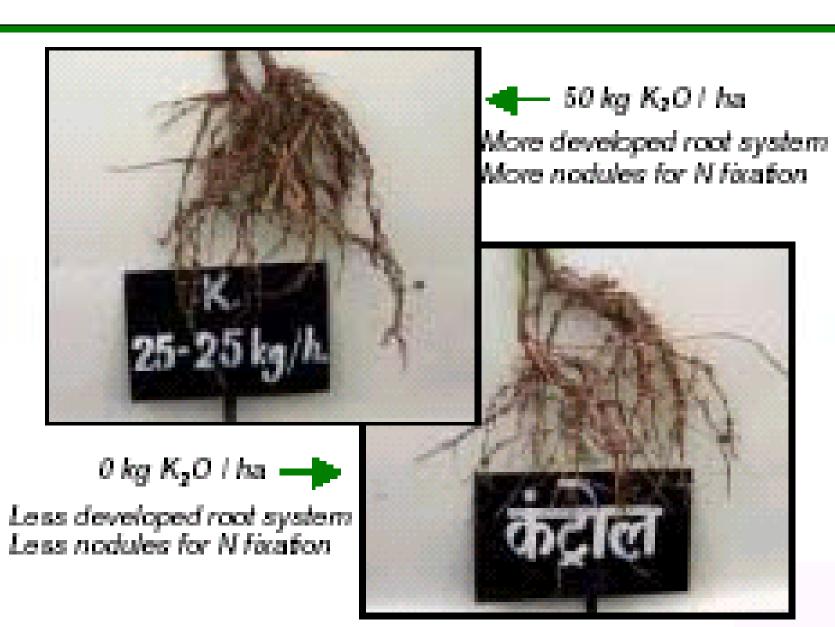
Most districts in Rajasthan categorized as medium in K status. Districts Barmer, Churu, Sriganganagar, Jhunjhunu, Jodhpur and Sikar are in High K status.

Districts Dholpur, Rajsamand and Udaipur are in LM status.

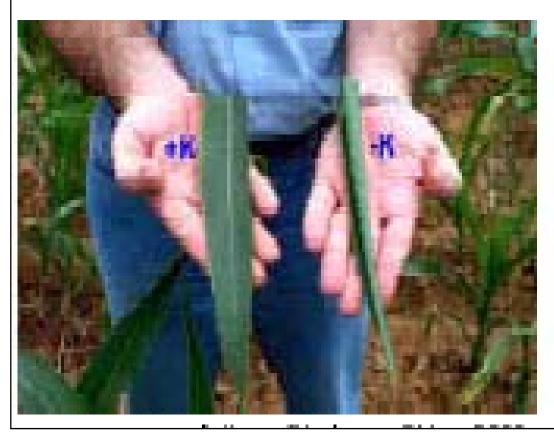
Role of K in Plants

- Activate more than 60 enzymes, involved in major growth processes.
- Promotes photosynthesis, resulting in formation of carbohydrates, oils, fats and protein.
- Involved in the movements of photosynthates to storage organs (seed, tubers, roots and fruits).
- Improves efficiency of N fertilisers by enhancing production of proteins.
- Essential for formation of sugars in plants (sugarcane, potato and other crops).
- Increase ability of plants to withstand stress.
- Regulates absorption of water by plant roots.
- Improves quality of crops and prolong self –life.
- Essential for efficient biological N fixation.

Apparent NPK use efficiency in wheat **Nutrients** 100% N 100% P 100% K **N/P2O5** saving (t) 53102 N 64.0 32.0 51.4 4779 21.0 30.4


K Deficiency symptoms

- Chlorosis along leaf margin followed by scorching & of the tips of older leaves which moves inward.
- Slow and stunted growth.
- Weak stalk poor root development.
- Low yield shriveled grain.
- Reduction in quality of crop produce.
- Reduction in resistance to pest, disease, drought and lodging.



SOYBEAN

Sehore, M.P., India, 1999

K and drought in maize

K and lodging of wheat

Gurdespur, Punjeb, India, 1997

Distribution per Sale Point particulars Rajastahn India Village 2.8 2.2 No. of holdings 379 377 Net cropped area 1095 504 (ha) NPK consumption 38.9 61.3 (tonnes)

Total sale points (14,158)

Dealer's network

- Makes fertiliser available to farmers
- Influence farmers purchase decisions
- Concentration in mandi towns
- Only match demand-supply
- Not playing major role in promoting K

Need for promotion of K

- K consumption not growing
- Deterioration in N:P:K ratio
- Soil fertility and crop yields declining
- Diversified crops need more K
- Quality considerations are getting importance
- Concessions have not helped in restoring the ratio at desired level
- Present promotional activities are below thresh hold level

Fertilizer Recommendations for Important Crops in Rajasthan-Nutrients in kg/ha

CROP	N	P2O5	K2O
HYV Rice	120	50	40
HYV Wheat	120	40	30
Sunflower	80	60	40
Sugarcane	150	60	30
Potato	150	60	60

General fertiliser recommendations need revision in the light of soil test values and crop response.

Farmers should be encouraged to adopt recommendations based on soil test.

Application of Potash can not be ignored now.

BALANCED FERTILISER USE WITH RECOMMONDED N:P:K DOSE/RATIO IS ESSENTIAL FOR:

- * CROP PRODUCTIVITY,
- * QUALITY OF FARM PRODUCE,
- * SOIL HEALTH,
- * ENVIRONMENTAL DEGRADATION

