Nutrient management in crop production system in China

Fusuo Zhang, Qing Chen, Wenqi Ma and Weifeng Zhang

Department of Plant Nutrition China Agricultural University Beijing 100094 P.R.China E-Mail: zhangfs@cau.edu.cn

Fusuo et al.; IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 2005

Outline

- ➤ Why fertilizer consumption does not correlated with grain production?
- ➤ Why the average data could not be used for making political recommendation in China?
- What is the driving force for fertilizer consumption and production?
- Why nutrient management?
- **➤** How to do nutrient management?
- > Future challenges

Why fertilizer consumption does not correlated with grain production closely any more?

Benefit and Efficiency of Fertilization in Greenhouse Cucumber in Shouguang, Shandong

Fertiliz	er type/rate	Yield increase	Benefit	Recovery
	kg/ha	kg/kg	I/O	%
N	≥ 1200	34.5	19.3	9.4
P2O5	≥ 1200	24.4	11.8	3.3
K2O	≥ 750	23.1	13.0	8.0

Why the average data could not be used to make a general policy for fertilizer production and consumption for China?

National farmer's survey

Methods

- Sample/Selection some counties were selected and 75-120 farmer households from 9-12 villages in each county were visited.
- Questionnaire: including information on Location, Family member, types of land use, crop fertilization and fertilizer application method and efficiency and so on

Only 1/3 of farmers use reasonable amount of N fertilizer

1/3 too much, 1/3 too less

Crop	N rate kg/ha N		
	<150	150-250	> 250
Rice	32.3	34.2	33.6
Wheat	34.5	34.5 39.1 26.4	
Maize	34.9	34.3	30.8

(more than 10000 farmers in 22 provinces)

Fertilizer application	Amount of farmers	Fertilizer nitrogen	Organic nitrogen	Ratio of Output/input (kgN/kgN)
kg/ha	no.	kg/ha	kg/ha	(ing: Wing: 1)
>1500	3	1639.2	431.3	0.20
1200-1500	1	1264.2	212.1	0.28
900-1200	6	863.6	200.9	0.40
600-900	27	576.8	149.2	0.60
300-600	13	445.0	62.2	0.85
< 300	2	274.9	0	1.52
average	(52)	639.9	145.2	0.55

What is the driving force for fertilizer consumption and production?

Financial support to fertilizer industry by Chinese government (Billion RMB), 2004

Item	Nitrogen	phosphorous	Remarks
Raw material	5.9		Include coal and natural gas
Electric power	7.9	0.57	
Value added tax	27.4	9.1	Include the tax in production and distribution
Transportation	4.3	3.3	Include the railroad fee of the raw material and products
Subsidy	3.7	0.35	
Total	49.2	13.3	
Percentage of production value	47%	20%	Total production value in current exchange rate

Why nutrient management? Sum of al.: IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 2005

Inappropriate use of chemical fertilizer and improper nutrient management result in decline of maize productivity and nutrient use efficiency

Under-fertilization

Nutrient management (NM) can solve the both under- and over-fertilization problems

How to do better nutrient management?

Future challenges

Farmer's Ours

