

Content

- Greenhouse production in the Netherlands
- Characteristics of fertigation in greenhouses
- Fertigation in practice
- Environmental problems
- Improvements in fertigation practice

Voogt; IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 200:

Content

- Greenhouse production in the Netherlands
- Characteristics of fertigation in greenhouses
- Fertigation in practice
- Environmental problems
- Improvements in fertigation practice

oogt; IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 2005

Statistics about the Netherlands Small country: 41 526 km² In and 4/5 water 1/5 16.1 million people 180 km Population density 475 people/km² Voc: IPI International Symposium on Fertigation: Optimizing the utilization of water and nutrients: Beijing, September 20-24, 2005

- Greenhouse production in the Netherlands
- Characteristics of fertigation in greenhouses
- Fertigation in practice
- Environmental problems
- Improvements in fertigation practice

Voogt; IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 2005

High fertiliser use High growth rates, high crop requirements High EC necessary for crop quality Unequal water distribution Surface water use Fertilisers costs insignificant

Content

- Greenhouse production in the Netherlands
- Characteristics of fertigation in greenhouses
- Fertigation in practice
- Environmental problems
- Improvements in fertigation practice

Voogt; IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 2005

Fertigation in greenhouses

- Late '40's Introduction irrigation systems
- First steps in 1950's,
- 1960's, electric appliances
- 1970 Water soluble fertilisers, Introduction drip irrigation
- 1980 nutrient solutions, electronics
- 1990 liquid fertiliser, automation, improved sprinklers/drip

Standard nutrient solution	NH4	K	Ca	Mg	NO3	SO4
mmol/l	0.4	5.0	2.0	1.5	9.4	1.5
mg/l	16	196	80	36	132	47
per	1 m3					
Stock tank A	kg					
Calciumnitrate	43					
Ammoniumnitrate	6					
Potassiumnitrate	54					
sum		103				
Stock tank B						
Potassiumnitrate	66					
Magnesiumsulphate	37					
Potassiumsulphate	0					
sum		103				

	Nutr. Sol.	Water	Adjustos	l nutr. Sol.		
	mmol/l	mmol/l	mmol/l			
NH4	0.4		0.6			
K	5		7.5			
Ca	2	3	0			
Mg	1.5	1	0.7			
NO3	9.4		12.4			
SO4	1.5	2	0			
Na		2.5	0			
CI		2.8	0			
						per 1 m3
				Stock tanl	•	kg
				Ammoniun	nnitrate	9
				Potassium	nitrate	176
				Magnesiun	nnitrate	28

Details

- NH₄: extra with calcareous soils
- P: only base dressings
 - Exceptions extreme low P in soil
- Micro elements not standard; but
 - B in case of low B in irrigation water
 - Fe chelate: chlorosis susceptible crops

Voogt; IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 200

APPLIED PLANT RESEARCH

WAGENINGENUR

Content

- Greenhouse production in the Netherlands
- Characteristics of fertigation in greenhouses
- Fertigation in practice
- Environmental problems
- Improvements in fertigation practice

Voogt; IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 2005

			e or some g	lasshouse	crops.	
Crop	Water m3/ha	N kg/ha	P kg/ha	K kg/ha		
Tomato	12950	1150	205	1410		
Cucumber	10400	980	240	1100		
Rose	11500	990	110	910		
		Water	and nitroge	en efficien	cy rates for so	ne cro
		Crop		Water	Nitrogen	
		Crop Tomate	0	Water 0.80	Nitrogen 0.55	
		Tomate Cucum		0.80	0.55	
		Tomate Cucum	ber	0.80 0.79	0.55 0.54	

Governmental policy, (Netherlands) reduction environmental impact Obligatory for soil grown crops Rainwater collection basin, 500 m3/ha Re-use of drainage water if possible Targets for 2010 Reduction in consumption of, N and P fertilisers

How to achieve these goals?

- Greenhouse production in the Netherlands
- Characteristics of fertigation in greenhouses
- Fertigation in practice
- Environmental problems
- Improvements in fertigation practice

Voogt; IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 2005

Options

- Re-use of drainage water
- Tuning supply and demand
- Reduction N and P in soil

Voogt; IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 2005

APPLIED PLANT RESEARCH

WAGENINGENUR

Re-use drainage water other problems

- Salinity:
 - Na and CI
 - Ca and SO4 / Ca and HCO3
- Phytopathogens
- Deep ground water / no drainage

Voogt; IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 200

APPLIED PLANT RESEARCH

WAGENINGENUR

Avoidance vertical flow of water Supply to crop demand Water supply adjusted to water uptake Nutrient supply attuned to crop growth fertigation model Fert lisation uptake model Irrigation transpiration model

Basic principles:

- Evapotranspiration = crop requirement
- Soil water holding capacity >> irrigation per time
- Nutrient supply is connected to water supply
- Perfect water quality, no salinity problems
- Uniformity in distribution of irrigation
- Uniformity in crop growth

/oogt; IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 2005

WAGENINGEN UR

WAGENINGENUR

Water supply Based on transpiration model crop specific factors global radiation air temperature heating temperature plant size soil type

APPLIED PLANT RESEARCH

Fertiliser supply Based on nutrient uptake model Simple model concentration based (EC nutrient solution) Initially based on total crop uptake 1 Estimation of total yield 2 N, K uptake estimated from linear regression 3 Uptake allocated to weekly periods 4 Nutrient solution calculation 5 Supply concentration calculation, in relation with actual transpiration Cropping stage adjustments

Fertigation model WUE increase from 0.65 - 0.95 NUE increase from 0.56 - 0.85 Vogg. IPI International Symposium on Fertigation: Optimizing the utilization of water and nutrions, Beijing, September 20-24, 2005 APPLIED PLANT RESEARCH WAGENINGEN DEL

Conclusion

- Current fertigation strategy not sustainable
- Complex hydrology; re-use drainage water not general applicable
- Supply tuned to crop requirement best solution i.e. Fertigation model
- Further improvements by reduction N and P in soil
- Bottle- necks:
 - High standards for water quality
 - Unequal distribution of water

Voogt; IPI International Symposium on Fertigation; Optimizing the utilization of water and nutrients; Beijing, September 20-24, 2005

APPLIED PLANT RESEARCH

WAGENINGEN UR

