

Management of Saline and Sodic Soils

- Must develop a salt balance approach
- understanding of amount and nature of mobile salts being added to and removed from soils
- must know about the <u>quality</u> of irrigation water
- <u>quantity</u> of irrigation water being applied
- soil <u>drainage</u> status

tigation: Optimizing the utilization of water and nutrients: Beijing Septemb

Addition of Anhydrous Ammonia to Irrigation Water (reactions)

 $NH_{3} + H_{2}O = NH_{4}OH$ $NH_{4}OH = NH_{4} + OH$ $OH^{-} + HCO_{3}^{-} = CO_{3}^{2-} + H_{2}O$ $Ca^{2+} + CO_{3}^{2-} = CaCO_{3(s)}$

ing the utilization of water and nutrients: Beijing, Sept

IIII Irrigation Water Quality															
Sam	pН	Ca	M g	Na	К	CO32-	HCO3	Cl	SO₄ [∶]	NO3	PO42-	EC	SAR	SSP	TSS
ple					mg L ^{.1}							dS	Adj.		ррт
1	8.2	74	33	130	4.8	0	148.8	120	100	0.5	0.03	0.7	6.2	46.4	611
2	8.6	180	56	590	11.6	4.8	151.3	820	160	5.6	0.31	1.9	21.5	64.9	1981
3	8.3	42	29	250	8.7	1.2	185.4	340	48	3.8	0.14	1.0	13.7	69.8	909
4	8.4	220	40	330	4.9	1.2	102.5	420	230	16.4	0.06	1.5	11.1	49.9	1366
5	8.5	69	22	170	4.2	2.4	70.8	160	110	3.2	0.03	0.7	7.2	57.9	612
6	8.6	46	13	61	5.1	8.4	87.8	75	39	0.9	0.25	0.4	3.3	43.1	337
7	8.6	25	6	66	2.2	4.8	109.8	41	22	4.0	0.02	0.5	4.3	61.4	281
8	8.1	60	33	100	4.9	0	90.3	93	93	0.2	0.02	0.5	4.4	42.7	475
9	8.4	40	12	110	7.1	2.4	131.8	150	17	0.8	0.09	0.5	6.4	60.2	471
10	8.3	41	13	380	3.3	1.2	302.6	300	78	5.5	0.04	1.3	25.3	83.8	1125
Silvertoot	h; IPI Inter	national S	ymposium	on Fertigat	ion; Optimi	zing the utiliza	ation of water ar	ad nutrients	; Beijing, Se	ptember 20-2	4, 2005				A

