


## ROLE OF POTASH FOR HIGH QUALITY PRODUCE UNDER INTEGRATED NUTRIENT MANAGEMENT

FAI-IPI Dealers Training Program Kalpetta, Kerala, 16 September 2008



#### **IPI PROJECTS IN INDIA**



## **IPI ACTIVITIES IN INDIA**



#### **Balanced fertilization experiments**



A COLLABORATIVE PROJECT OF G.B. PANT UNIV. OF AGRI. & TECH., PANTNAGAR & INTERNATIONAL POTASH INSTITUTE DATE : 239-3

#### On-farm demonstration plots





## **IPI ACTIVITIES IN INDIA**

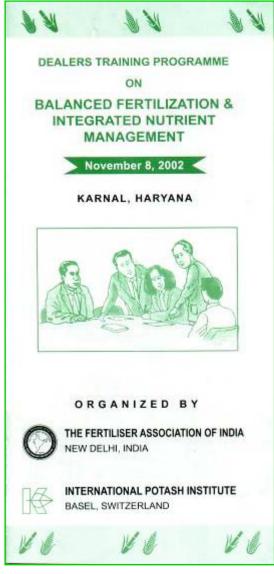
1 Stores



## **IPI ACTIVITIES IN INDIA**

BALANCED FERTILIZAT IN PUNIAB AGRICULT




Publications in local languages

Scientific publications

#### EXTENSION ACTIVITIES IN INDIA – 2002-2007

IPI and FAI continued the joint program of training courses for fertilizer dealers at different locations in India. The purpose is to reach the last & closest link to the farmer in the marketing chain of MOP in India.

- 30 **Dealers training programs** on "Balanced Fertilization and Integrated Nutrient Management" at 4 FAI Regional Offices
  - 1 in 2002
  - 4 in 2003
  - 6 in 2004
  - 6 in 2005
  - 6 in 2006
  - 5 in 2007
  - 2 in 2008



#### FAI-IPI dealers training programs



Ooty. April 24, 2006

Puri, Orissa., on March 3, 2004

#### FAI-IPI Dealers training programs 2002-2006

- WEST:
  - Pune, Maharashtra. March 5, 2003
  - **>** Raipur, Chattisgar. March 1, 2004
  - Indore, Madhya Pradesh. Sept. 29, 2004
  - Bhopal, Madhya Pradesh. March 24, 2006
  - Satara, Maharasthra. April 27, 2006
  - > Aurangabad, Maharashtra. September 25, 2006

#### EAST:

- > Ashoknagar, WB. September 17, 2003
- Puri, Orissa. March 3, 2004
- Siliguri, W.B. October 4, 2004
- Ranchi, Jharkhand. March 21, 2005
- Patna, Bihar. October 1, 2005

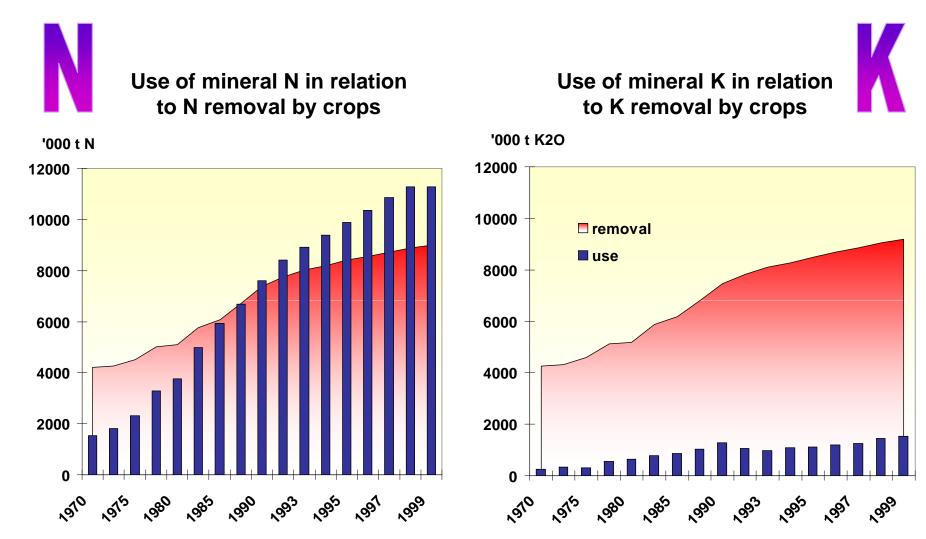
#### NORTH:

- Karnal, Haryana. November 8, 2002
- > Jaipur, Rajasthan. September 21, 2003
- > Dehradun, Uttranchal. February 20, 2004
- Lucknow, U.P. October 1, 2004
- Manali, H.P. March 24, 2005
- Jodhpur, Rajasthan. October 10, 2005
- Ludhiana, Punjab. March 21 2006
- > Rudarpur, Uttranchal. September 29, 2006

#### SOUTH:

- > Kanchipuram, T. Nadu. March 7, 2003
- Kochi, Kerala. March 15, 2005
- Pondicherry. October 4, 2005
- > Ooty, April 24, 2006





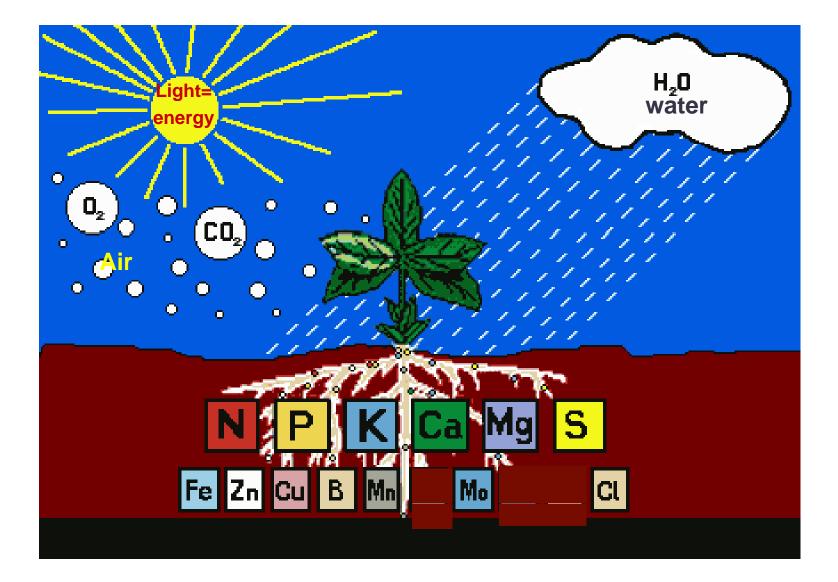

#### **FAI-IPI fertigation training programs**

- **1.** Pune, Maharashtra. September 15-17, 2003
- 2. Bangalore, Karnataka. February 27-28, 2004
- **3.** Hyderabad, A.P. September 27-28, 2004
- 4. Vadodara, Gujarat. March 17-18, 2005
- 5. Nasik, Maharashtra. December 8-9, 2005
- 6. Coimbatore, Tamil Nadu. October 6-7, 2006
- 7. Aurangabad, Maharashtra. October, 2007

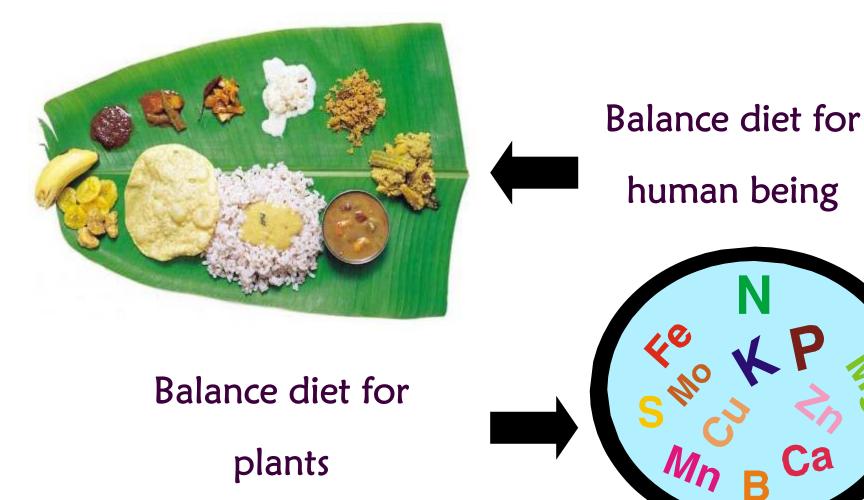
Participants: fertilizer dealers, progressive farmers practicing drip irrigation, State Department of Agriculture, the fertiliser industry and institutional agencies involved in the fertilizer marketing.

#### Create awareness about balanced fertilization: the nutrient balance in India is out of order



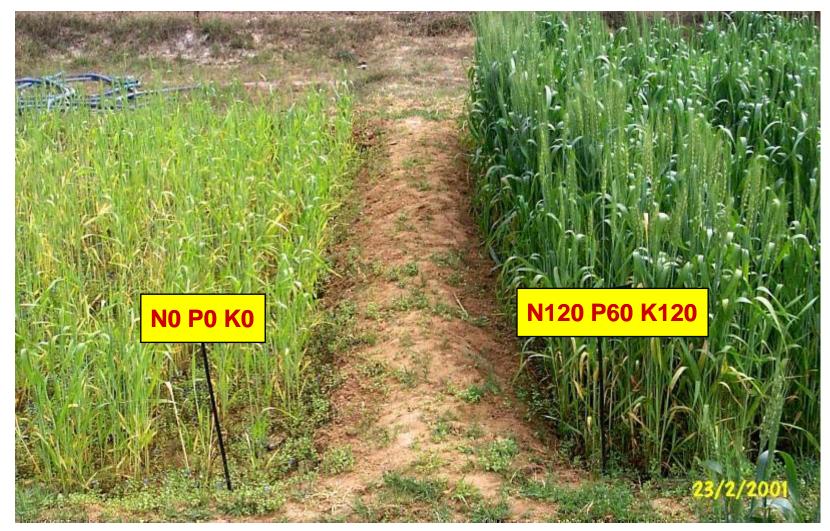

#### **Nutrient Balances**

#### the nutrient balance in India is out of order


| Estimated Balance Sheet of K in Indian Soils |                                                              |                                                                              |  |  |  |  |
|----------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
|                                              | K <sub>2</sub> OMt                                           | Remarks                                                                      |  |  |  |  |
| Potassium Additions                          |                                                              |                                                                              |  |  |  |  |
| Fertilizer                                   | 2.413                                                        | Actual                                                                       |  |  |  |  |
| Urban compost                                | 0.070                                                        | 1% of 7 Mt                                                                   |  |  |  |  |
| Rural compost                                | 1.400                                                        | 0.5% of 280 Mt                                                               |  |  |  |  |
| FYM                                          | 1.450                                                        | 5% of dung availability (total 290<br>Mt)                                    |  |  |  |  |
| Crop Residue                                 | 0.979                                                        |                                                                              |  |  |  |  |
| Irrigation water                             | ?                                                            |                                                                              |  |  |  |  |
| Total Addition                               | 6.242                                                        |                                                                              |  |  |  |  |
| Potassium Removals                           | 13.500                                                       | 7.5% crop uptake is in situ<br>recycled+ removals by<br>leaching and erosion |  |  |  |  |
| Balance Sheet                                | -7.25 or -37.5 kg K <sub>2</sub> O /ha of gross cropped area |                                                                              |  |  |  |  |

## **PLANT NUTRIENTS**

#### What does a plant need to live?



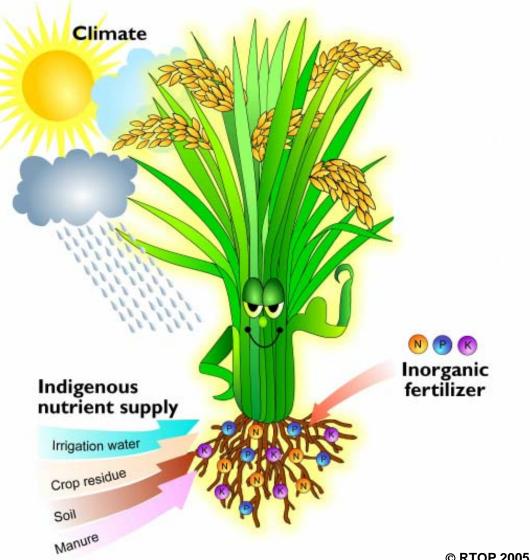

#### **Balanced nutrition**



plants

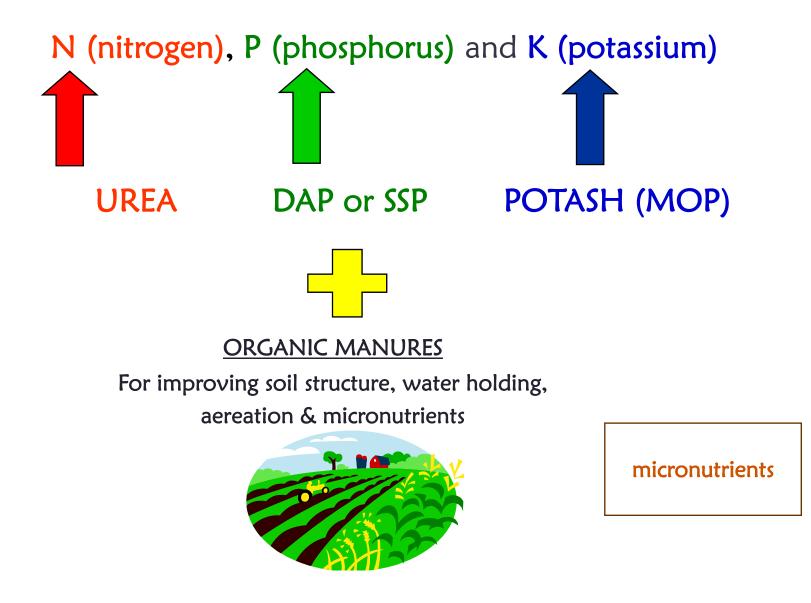
**Balanced nutrients application** 




Long Term Fertilizer Experiments

Gurgaon, Haryana, February 2001

# Long term effects (Wheat at PRII on 1-2-07 after 20 years)

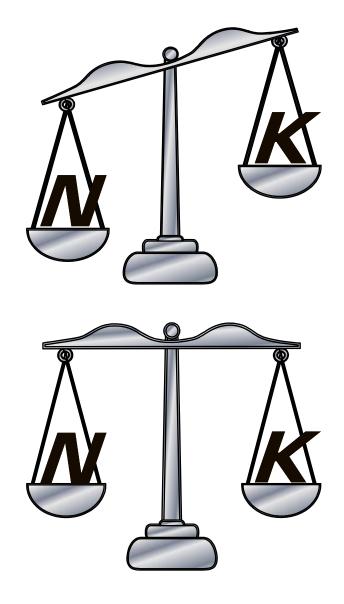


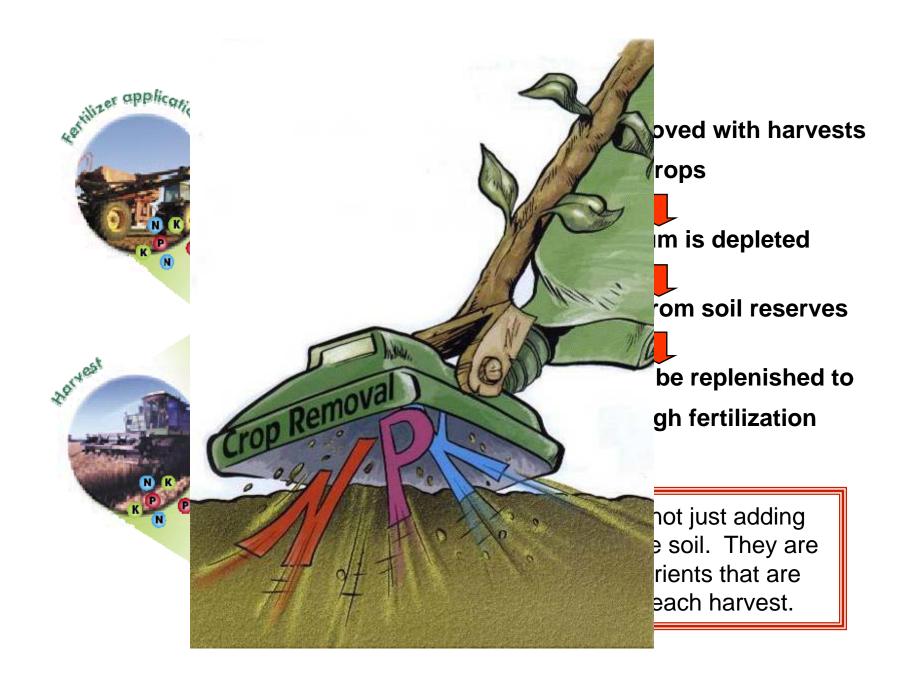

#### Feeding the crops – Integrated nutrient management



© RTOP 2005

#### **Integrated nutrient management**





#### **Balanced fertilization**

#### Too much nitrogen ...

- Excessive vegetative growth
- Lodging
- Diseases, pests
- Low quality produce
- Low N fertilizer use efficiency
- Contamination of groundwater by unused nitrates
- Lower economic return

In INDIA N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O ratio = 6.9 : 2.6 : 1Average K dose =  $8.6 \text{ kg K}_2$ O/ha





#### NUTRIENTS UPTAKE BY CROPS

| •                    | 11.11.6    |     |          | K O      |     |                                         |  |
|----------------------|------------|-----|----------|----------|-----|-----------------------------------------|--|
| Crop                 | Unit of    | N.  |          | K₂O      | S   |                                         |  |
|                      | produce    | k   | g per to | n produc | e   |                                         |  |
| Cereal cro           |            |     |          |          |     | · ·                                     |  |
| Rice                 | Grain      | 15  | 6        | 4        | 0.6 |                                         |  |
|                      | Straw      | 8   | 3        | 30       | 0.3 |                                         |  |
| Wheat                | Grain      | 20  | 6        | 8        | 2.0 |                                         |  |
|                      | Straw      | 28  | 8        | 37       | -   | 34 kg K <sub>2</sub> O/ton * 5 t/ha     |  |
| Maize                | Grain      | 15  | 6        | 5        | 1.2 |                                         |  |
|                      | Stover     | 10  | 4        | 18       | 1.4 | 170 kg K <sub>2</sub> O/ha              |  |
| Oil crops            |            |     |          |          |     |                                         |  |
| Sunflower            | Seed       | 20  | 15       | 30       | 5   | A crop of rice yielding                 |  |
| Soybean <sup>2</sup> | Seed       | 65  | 14       | 23       | 2   | t/ha removes                            |  |
| Sugar crop           | 5          |     |          |          |     |                                         |  |
| Sugarcane            | Dry matter | 1.8 | 0.4      | 6.0      | 0.3 | 170 kg K <sub>2</sub> O/ha              |  |
| Tuber crop           | s          |     |          |          |     | 45 kg P <sub>2</sub> O <sub>5</sub> /ha |  |
| Potato               | Tuber      | 3.4 | 1.0      | 6.0      | 0.5 | 165 kg N/ha                             |  |
| Vegetable            | crops      |     |          |          |     |                                         |  |
| Tomato               | Fruit      | 3.0 | 0.8      | 3.7      | 1.4 |                                         |  |
| Cucumber             | Fruit      | 1.7 | 1.3      | 2.9      | -   |                                         |  |
| Fruit crops          |            |     |          |          |     |                                         |  |
| Citrus               | Fruit      | 1.7 | 0.5      | 3.2      | 0.1 |                                         |  |
| Banana               | Bunch      | 1.7 | 0.5      | 6.0      | 0.2 |                                         |  |
|                      |            |     |          |          |     |                                         |  |

#### Role of potassium in the plant

#### Functions

- Important in plant water uptake, water use and water balance in the plant
- Regulates > 60 enzymatic systems
- Aids in the photosynthesis
- Catalyses many metabolic processes like synthesis of carbohydrates, protein and lipids
- Facilitates cell division and growth
- Regulates opening and closing of stomata leaf pores through which water leaves the plant (transpiration) and though which gases (oxygen and carbon dioxide) pass (i.e., gas exchange)
- Promotes the N uptake and protein synthesis
- Potassium regulates plant metabolism ensuring a healthy and sturdy crop which is more resistant to stresses. VIGOR &HEALTH









#### How potassium works to increase crop yields

- Increases root growth and improves drought resistance
- Maintains turgor; reduces water loss and wilting
- Aids in photosynthesis and food formation
- Reduces respiration, preventing energy losses
- Produces grain rich in starch, oils and proteins
- Builds cellulose & stronger stems, reduces lodging
- Improves winter hardiness & frost resistance
- Protects against pests and diseases





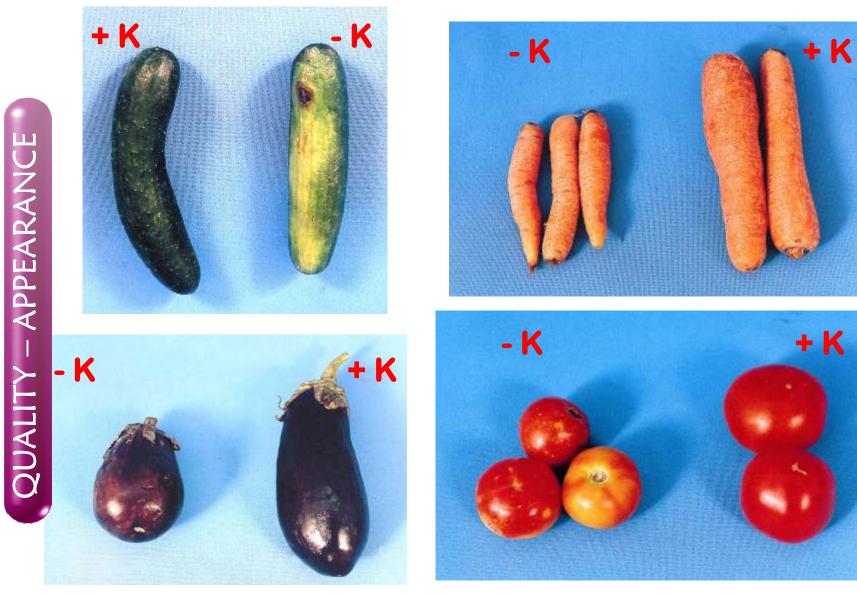




# K increases the quality of the agro-products



- Improves QUALITY of grains, vegetables & fruits:
  - Grains are bolder and more shining
  - Fruits & vegs have bigger size
  - Fruits & vegs have better color & flavor
  - Uniform ripening


QUALIT

- Less fissures, cracks and lesions
- Less incidences of diseases
- Higher nutritional value (more protein, oil and vitamin C content in grains and fruits)
- Improved storage, transportation & longer shelf life





#### K IMPROVES VEGETABLES APPEARANCE



**IPI EAST EUROPE** 

#### K INCREASES THE QUALITY OF THE AGRO-PRODUCTS - MANGO



## Rubber (Hevea brasiliensis Muell.Arg.)

| Nutrients immobilized, returned and removed in a 30-year period - Macronutrients |            |            |             |            |  |  |  |  |
|----------------------------------------------------------------------------------|------------|------------|-------------|------------|--|--|--|--|
| Kind of removal/return                                                           | kg/ha      |            |             |            |  |  |  |  |
|                                                                                  | N          | P205       | K20         | MgO        |  |  |  |  |
| Total immobilized in 30-year<br>period                                           | 1500-1800  | 458-573    | 1440-1680   | 300-365    |  |  |  |  |
| Total returned in leaf litter                                                    | 1400       | 82         | 426         | 275        |  |  |  |  |
| (annual range in 5 <sup>th</sup> to 30 <sup>th</sup><br>years shown in brackets) | (34-73)    | (2.1-4.6)  | (10.2-21.6) | (6.6-14.1) |  |  |  |  |
| Total removed in latex                                                           | 485        | 94         | 418         | 120        |  |  |  |  |
| (annual range in 6 <sup>th</sup> to 30 <sup>th</sup><br>years shown in brackets) | (6.1-35.7) | (2.4-17.6) | (6.0-39.1)  | (1.4-9.3)  |  |  |  |  |

Total litter fall in 5th-30th years 104 t/ha, ranging from 2.5 to 5.4 t/ha/yr,¦peaking in 9th-12th years. - Total yield of dry rubber in 6th-30th years 46.6 t/ha, ranging from 0.62 to 3.0 t/ha/yr, generally highest from 12th to 23rd years

#### Nutrient effects on latex quality

High N and Mg can adversely affect the technological properties of concentrate latex. Excessive Cu and Mn adversely affect the oxidative process of the rubber. Within the tree, excessive Mg and Ca can cause instability in the latex vessels resulting in early pre-coagulation on the excised bark, thus reducing the time of flow and yield.

## **Coconut** (Cocos nucifera L.)

 One hectare of coconuts (average of 150 palms) producing 12-14 leaves and 100 nuts/tree/year contains in the harvest (matured bunches) the following amount of nutrients (per year):

| 49 kg N                             | 5 kg Ca  |
|-------------------------------------|----------|
| 16 kg P <sub>2</sub> O <sub>5</sub> | 8 kg Mg  |
| 115 kg K <sub>2</sub> O             | 11 kg Na |
| 64 kg Cl                            | 4 kg S   |

The husk contains 60 % of the K<sub>2</sub>O, 18 % of N and 26 % of Mg removed in the harvest. It is therefore recommended that wastes such as coconut husks and leaf fronds be left in the field to undergo decomposition and mineralisation so that nutrients eventually return to the crop.

#### **RESPONSES OF RICE TO POTASH FERTILIZATION**

#### HIGHER YIELD

- BETTER RESPONSE TO N
- **IMPROVED GRAINS** 
  - **✓** MORE FILLED GRAINS
  - ✓ HIGHER 1000 GRAIN WEIGHT



- **INCREASED RESISTANCE TO LODGING**
- **RESISTANCE TO DISEASES (brown spot, stem rot, leaf blight)** 
  - Source: De Datta and Mikkelsen, 1985; Von Uexkull, 1976

#### **POTASSIUM DEFICIENCY SYMPTOMS**



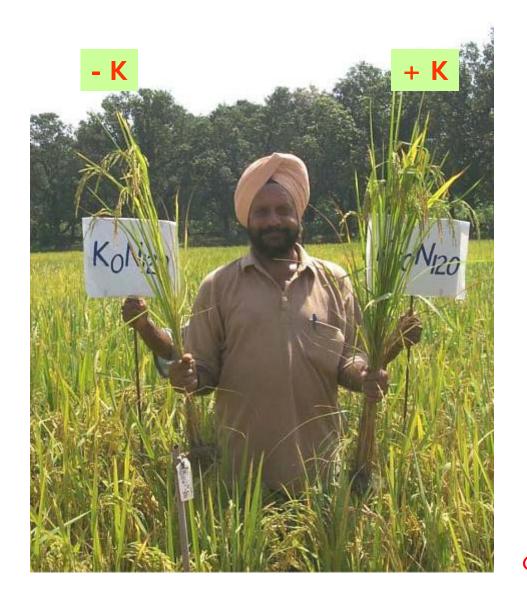


- Stunted plants with dark green leaves and short, thin stem
- Yellowing at interveins on lower leaves, starting from the tip
- Drying up of the leaf tips and margins
- Dark, brown spots starting from leaf tips, spreading later over the whole leaf
- Irregular necrotic spots on the panicles
- Long thin panicles, with high percentage of sterile or unfilled grains
- A high percentage of rotten roots

## Potash increases number of grains and grain filling in rice



Gurdaspur (Punjab), 2000


#### POTASH INCREASES PLANT HEIGHT AND NUMBER OF TILLERS



Gurdaspur (Punjab), 2000

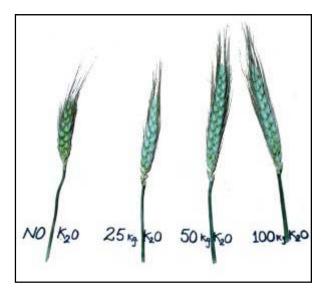
**IPI-PAU** experiments

#### Fertilizing rice with potash



Gurdaspur, Punjab 2001

# Effect of K application on rice growth in near Pantnagar, distt. U.S Nagar, U.A.

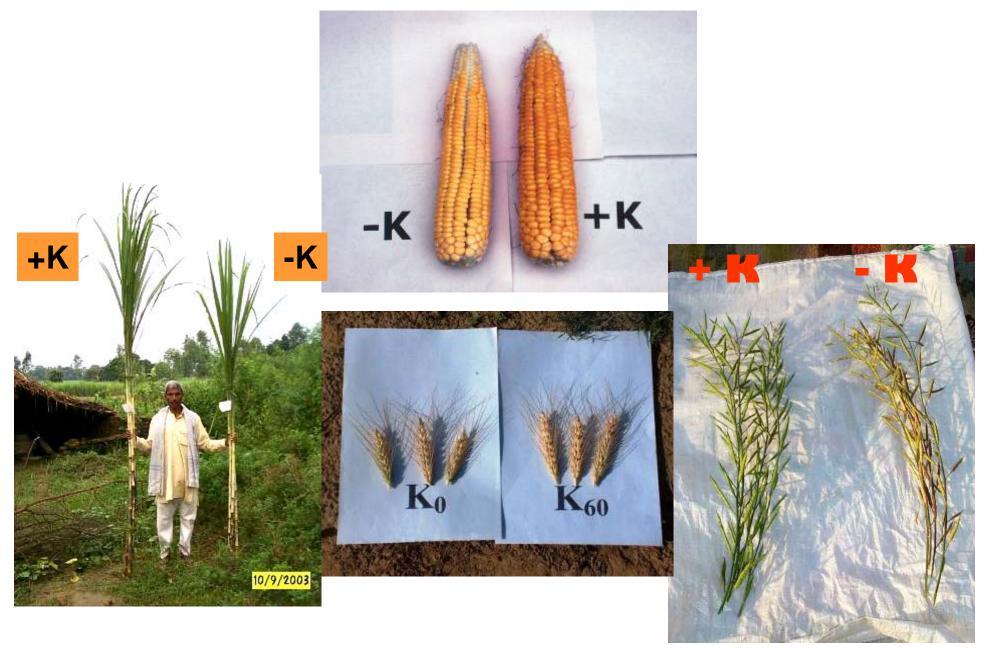



#### Fertilizing rice with potash

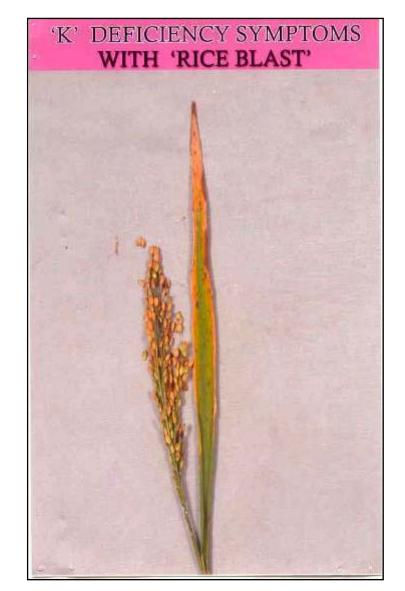


IPI-GBPUAT, Pantnagar 2004

#### **Response to potash application in IPI experiments**








### **Response to potash application in IPI experiments**



### K decreases disease attack in rice

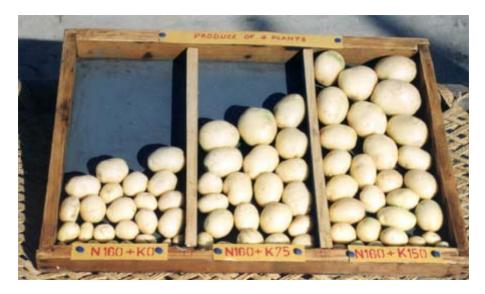


DISEASES



### **Response to potash application in IPI experiments**








+K

-K

#### **Response to potash application in IPI experiments**



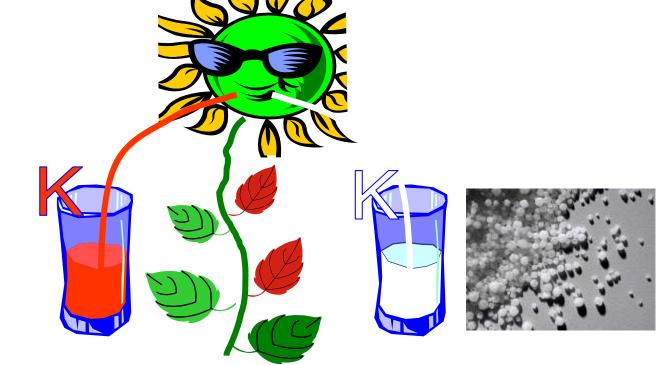






## **POTASH FERTILIZERS**

## **Red & white potash**






WHITE

## When it comes to potash, Crops are color-blind

- Soth red & white potash are chemically the same salt: potassium chloride (KCI)
- ♦ Both have equal amounts of potassium (60 % K<sub>2</sub>O)
- Soth are have equivalent agronomic effectiveness

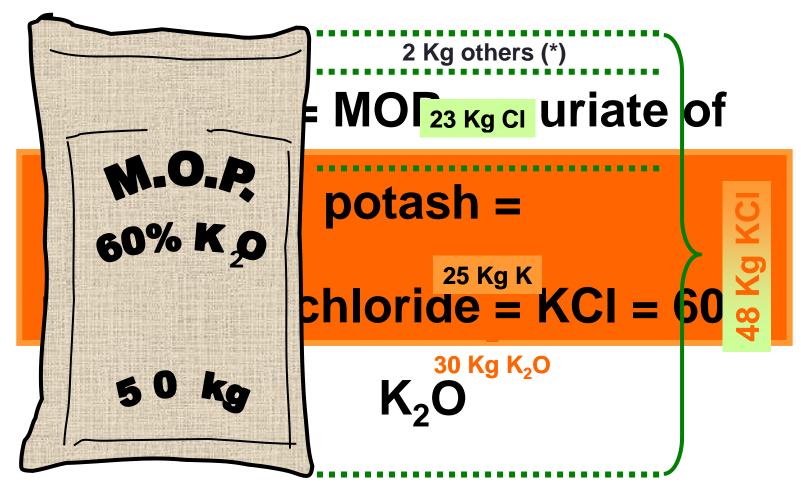




## WHITE POTASH

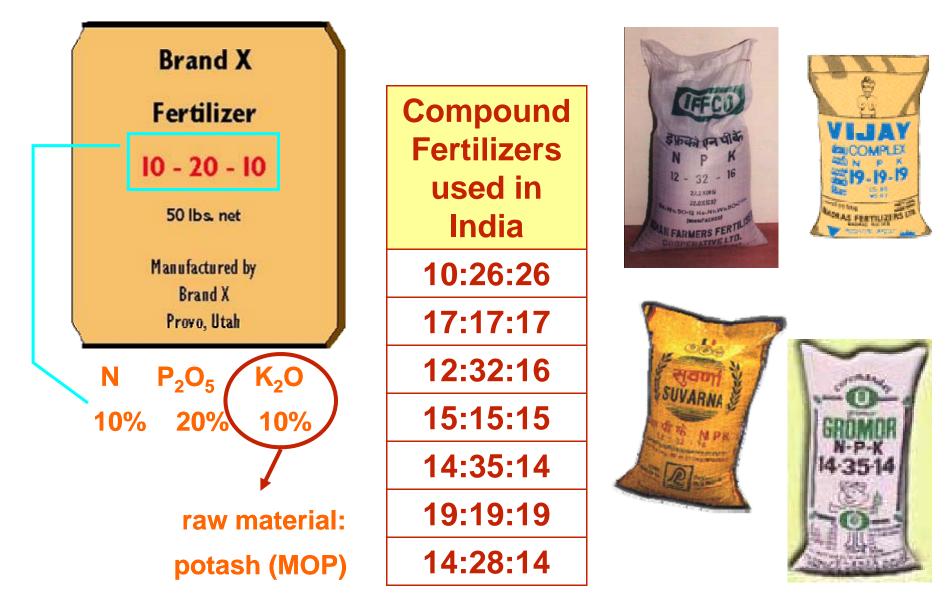


## **RED POTASH**




**Potash mines UK** 

### **Potash mines Spain**




## **Composition of MOP**



(\*) mainly CaCl<sub>2</sub>, MgCl<sub>2</sub>, and NaCl

## POTASH IN COMPOUND FERTILIZERS



## Can organic manures supply potash as a source of potassium ?

#### K content of organic manures

| MATERIAL                           | % K <sub>2</sub> O | <u>Organic manures</u>                                |
|------------------------------------|--------------------|-------------------------------------------------------|
| Farmyard manure                    | 0.5-0.6            | — * Contain low amounts of<br>nutrients NPK - Limited |
| Compost                            | 0.5-1.5            | contribution to nutrient                              |
| Green manure (cowpea)              | 0.6                | supply to crops                                       |
| Sewage sludge                      | 0.5-1.7            | Main value: supply of<br>organic matter to the soil,  |
| Castor cake                        | 1.0-1.1            | improving soil structure,                             |
| Groundnut cake                     | 1.3-1.4            | water holding, aereation.                             |
| Bird guano                         | 2.0-3.0            | Micronutrients                                        |
| POTASH                             | 60                 |                                                       |
| TO APPLY 60 KG K <sub>2</sub> O/HA | YOU NEED:          |                                                       |
| POTASH: 100<br>FYM : 10,000        | kg<br>kg           | Potash contains<br>100 times more<br>K !              |

# Thank You very much !

