Potential for response to potash application: the case of maize and rice production in Tanzania

J. Wickama; N. Mnzava; S. Mwango; Z. Mkangwa

Introduction

- Maize and rice are the two most consumed cereals in Tanzania.
- Potassium is required in these crops to stimulate plant vigor, development of root system, resistance towards pests and diseases and preventing crop plants from lodging (<u>Chianu et</u> <u>al., 2012</u>)
- Plants with insufficient K have difficulty absorbing water and N from the soil, which makes them more vulnerable to drought stress

Introduction (cont...)

- study of potassium's role in plant nutrition in Tanzania did not receive much enthusiasm in the past partly because it was taken for granted that the level of K was not limiting for the soils of Tanzania (<u>Acland, 1971</u>)
- Studies conducted in the rice fields of Lake zone (<u>Meertens</u>, 2003) and 8 rice growing areas from Mbeya, Coast and Morogoro(<u>Semoka & Mnguu</u>, 2000) found that extracted K values were higher than critical values
- Potential response for potash nutrition in maize and rice in Tanzania is not adequately understood

objectives

This paper examines status of Potassium in smallholder in selected areas in Tanzania and critically looks at;

- levels of soil exchangeable potassium in selected areas known for maize and rice production and;
- potential for response or non-response from selected sites towards K-application.

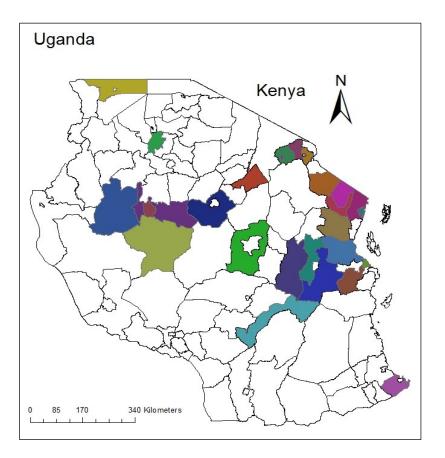
Materials and Methods

Data sources – 497 soil samples from;

- 13 rice irrigation schemes (116 samples)
- Smallholder farms from 14 districts (381 samples)
- Evaluation of exchangeable K was done from the top 30 cm of the soils.

Materials and Methods..... cont

• Yields information; Yields of maize and rice were obtained from farmers, Extensionists and other secondary sources


 Yields given in terms of bags (90 kgs bags per acre) were eventually converted into tons per hectare through calculations.

Materials and methods cont

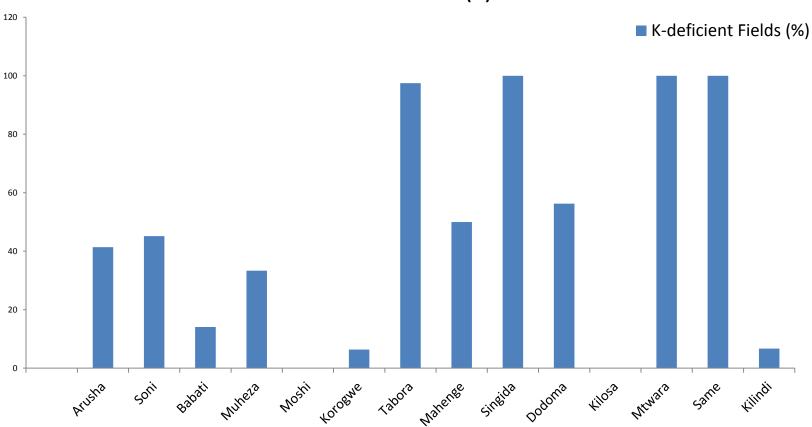
- Data collected from each scheme were stored in spread sheets (Excel 2010). Statistical analyses on the soil properties were performed using Statistical software called Develve.
- Reference criteria on the sufficiency and implication of exchangeable K were obtained from literature (<u>Landon, 1991</u>, <u>Baize, 1993</u>).

Materials and methods cont.....

Location of the study sites

Results-rice

Irrigation Schemes	Sampled locations	clay	Sand	рН	OrgC	TN	Av.P	Ca	Mg	К	K:M g	Na	Rice yields
	n	%	%	(w)	%	%	(mg/kg)	(cmols/kg)	(cmols/kg)	(cmols/kg)	ratio	(cmols /kg)	ton/ha
Bahi-Dodoma	7	48	34.8	7.3	0.74	0.076	3.84	14.02	4.08	0.68	0.16	2.66	3.6 (b)
Dakawa-Mvomero	11	39.1	49.6	7.84	0.89	0.06	4.54	18.94	5.39	0.39	0.07	0.74	3.5 (b)
Europryima	13	69.3	10.6	6.1	1.26	0.13	9.51	1.75	16.33	3.23	0.19	1.75	4.3(d)
Ilonga-Kilosa	20	36.3	46.6	7.3	1.21	0.13	38.85	8.59	2.75	1.27	0.46	0.09	4.9 (c)
Itigi-Singida	6	50	32.3	7.85	1.18	0.13	5.2	1.89	3.23	5.54	1.71	0.44	4.3(d)
Kitivo-Korogwe	5	34	54	7.86	17.57	0.21	7.655	29.76	1.31	1.15	0.87	0.51	5.1 (c)
Kivulini-Moshi	3	40	33	7.03	1.37	0.12	18.68	26.81	15.61	3.73	0.23	0.93	3.8(a)
Lekitatu-Arumeru	3	24	48	7.1	1.3	0.08	13.93	19.43	4.94	1.49	0.30	1.62	4.2(a)
Lower Moshi-Moshi	3	28	42	6.5	0.84	0.05	40.72	11.01	4.39	2.42	0.55	0.74	3.2 (c)
Lukenge-Mvomero	8	44.5	40.75	6.33	1.15	0.11	4.665	25.93	4.56	0.735	0.16	1.18	3.6 (b)
Mombo_Korogwe	13	42	38	7.35	1.76	0.2	27.87	21.2	3.98	0.78	0.19	1.26	3.9(a)
Ndungu-Same	16	42	39	6.59	1.39	0.12	3.24	14.24	5.16	0.67	0.13	9	4.3 (c)
Ruvu-Same	8	32.3	39.5	6.75	1.16	0.16	7.9	13.3	59.2	4.9	0.08	1.64	4.8(d)
Total/Mean	116	41	39	7.1	2.4	0.1	14.4	15.9	10.1	2.1	0.4	1.7	4.1

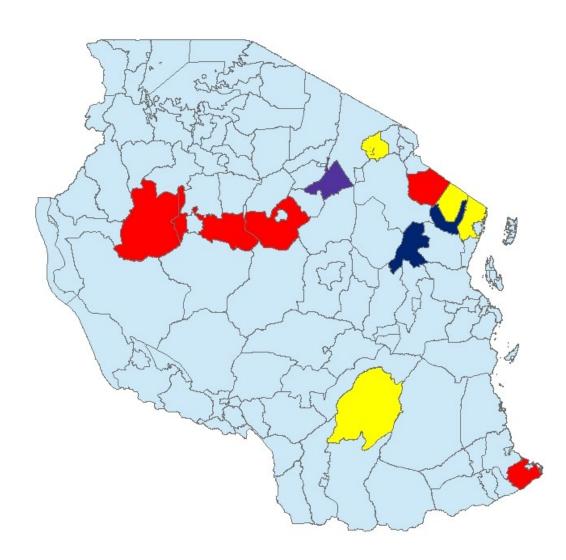

Stats-rice schemes

	clay	Sand	рН	OrgC	TN	Av.P	Ca	Mg	К	K:Mg	Na	Rice yields
Sampled loca	0.066	-0.025	-0.005	-0.039	-0.147	0.025	-0.061	-0.012	-0.054	-0.051	0.055	0.049
	0.81	0.93	0.98	0.88	0.59	0.93	0.82	0.97	0.84	0.85	0.84	0.86
clay		-0.838	-0.249	-0.170	-0.234	-0.368	-0.446	-0.067	0.155	0.033	0.121	-0.048
		0.00	0.35	0.53	0.38	0.16	0.08	0.81	0.57	0.90	0.65	0.86
Sand			0.513	0.401	0.251	0.140	0.564	-0.198		0.046	-0.133	
			0.04	0.12	0.35		0.02				0.62	
рН				0.410	0.272						-0.339	
				0.12	0.31	0.73		0.29				
OrgC					0.546			-0.166			-0.151	
					0.03						0.58	
TN						0.006		0.417	0.073		-0.146	
						0.98			0.79		0.59	
Av.P							-0.111	-0.160			-0.360	
							0.68				0.17	
Ca								-0.121	-0.459		-0.068	
								0.66		0.24	0.80	
Mg									0.576		-0.007 0.98	
к									0.02	0.28	-0.263	
<u> </u>										0.468	-0.263	
K:Mg										0.07	-0.351	
King											0.001	
Na											0.10	0.00
												0.96

Results-maize fields

Location of maize fields	Sampled locations	Clay	рН	Org.C	Av.P	к	Locations with K < critical level	Percent < critical level	Maize yields
	n	%	(w)	%	(mg/kg)	(meq/100g)	n		tons/ha
Arusha rural	29	35	5.5	1.5	6	1.85	12	41.4	1.623 (c, j)
Soni-Lushoto	31	40	6.1	2.3	2	0.82	14	45.2	1.227(b,e)
Babati	71	56	6.5	1.3	32	1.1	10	14.1	2.499(a)
Muheza	9	47	6.2	1.1	6	0.52	3	33.3	1.483(d)
KATC Moshi	31	31	7.8	0.8	3	1.24	0	0.00	1.423 (c)
Korogwe rural	47	38	6.6	1.3	11	2.03	3	6.4	1.563 (e)
Tabora rural	79	14	5.4	0.7	15	0.13	77	97.5	0.813 (j)
Lupiro-Mahenge	10	21	5.2	1.3	5	0.37	5	50.0	1.020 (g)
Singida rural	3	42	6.9	0.9	3	0.11	3	100	1.328 (e)
Dodoma rural	16	16	5.9	0.8	5	0.39	9	56.3	1.249 (e)
Kilosa rural	14	28	6.8	1.5	32	1.21	0	0.0	1.535(e)
Naliendele	9	10	5.5	0.5	4	0.11	9	100	0.918 (f)
Ruvu village	2	42	5.4	0.9	0.3	0.27	2	100	1.200 (h)
Kilindi rural	30	27	6.6	1.8	18	0.98	2	6.7	1.654 (i)
Total/Mean	381	32	6.2	1.2	10	0.8	149	39	1.395

Areas with inadequate potassium in maize fields



K-deficient Fields (%)

Stats-maize fields

	Sampled locations	clay	рН	OrgC	Av.P	K	Locations with K < critical level	Percent < critical level	Maize yields
Maize fields	0.106	-0.560	-0.211	-0.424	-0.109	-0.589	0.611	0.562	-0.564
	0.69	0.02	0.43	0.10	0.69	0.02	0.01	0.02	0.02
Sampled loca		0.078	0.059	0.087	0.507	0.309	0.658	-0.229	0.327
		0.77	0.83	0.75	0.05	0.24	0.01	0.39	0.22
clay			0.351	0.373	0.169	0.334	-0.370	-0.301	0.714
			0.18	0.15	0.53	0.21	0.16	0.26	0.00
рН				0.111	0.248	0.389	-0.399	-0.607	0.458
				0.68	0.35	0.14	0.13	0.01	0.07
OrgC					0.244	0.500	-0.223	-0.530	0.358
					0.36	0.05	0.41	0.03	0.17
Av.P						0.324	0.098	-0.513	0.623
						0.22	0.72	0.04	0.01
K							-0.291	-0.771	0.578
							0.27	0.00	0.02
Locations wi								0.413	-0.384
								0.11	0.14
Percent < cri									-0.642
									0.01

Likely responses-maize

Red- Response > 50%

Yellow - Response 30- 50%

Blue - Response < 30%

conclusion

- There are no immediate dangers of potassium deficiency in most of the irrigated rice schemes
- Potash levels may not be sustained with adoption of high yielding rice varieties
- Nearly 40% of maize smallholder fields already have potassium levels below the critical levels
- There is a significant potential for response to K-application in maize fields